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Abstract

This is the second lecture note on the error analysis of interpolation on simplicial ele-
ments without the shape regularity assumption '. In this manuscript, we explain the
error analysis of Lagrange interpolation on (possibly anisotropic) tetrahedrons. This
topic is hardly explained in standard textbooks of the mathematical theory of finite
element methods. The authors hope that this manuscript will be merged into a new
textbook in future. Therefore, this manuscript is not intended to be a research paper.
Supposed readers are students and researchers who are familiar with the mathematical
theory of the finite element methods.
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8§1. Lagrange interpolation on tetrahedrons

This is the second lecture note concerning the error analysis of interpolation on
simplicial triangulations without the shape regularity assumption. In this note, we will
explain the error analysis of Lagrange interpolation on tetrahedrons. To this end, we
summarize the results given in [11, 12, 13, 14]. Readers are referred to the first lecture
note [15] for the notation, lemmas, and theorems used in this manuscript.

Throughout this paper, 7' C R? denotes a tetrahedron with vertices x;,7 = 1,--- , 4,
and all tetrahedrons are assumed to be closed sets. Let \; be the barycentric coordinates
of a tetrahedron with respect to x;. By definition, 0 < \; < 1, Z?:l Ai = 1. Let Ny
be the set of nonnegative integers and v = (a1, -+ ,a4) € N} be a multi-index. If
lv| == 2?21 a; = k, then ~v/k := (a1/k, -+ ,a4/k) can be regarded as a barycentric
coordinate in T'. The set X*(T') of points on T is defined by

y
Ek(T):z{EET)h]:k,fyeNé}.

Let Pr(T) be the set of polynomials defined on 7" whose degree is at most k. For a
continuous function v € C°(T'), the Lagrange interpolation Zhv € Py (T) of degree k is
defined as

v(x) = (Tho)(x), Vx e ZF(T).

Let m, 0 < m < k be an integer, and p, 1 < p < oo be a real. For the mathemat-
ical theory of finite element methods, estimating error [v — Z%v|,, , 7 of the Lagrange
interpolation is an important task. For error analysis, the following condition is usually
imposed for the meshes to use in many textbooks [4, 7, 9].

Suppose that X is a set of (possibly infinitely many) simplicial elements (triangles
or tetrahedrons). For T' € X, let hyp := diamT, and pr be the diameter of its inscribed
ball.

Assumption 1 (Shape regularity).  The set X is called shape regular if there
exists a constant o > 0 such that

h
T <o, VT € X.
PT

The shape regularity assumption requires that any element 7' € X" is not too “flat”, or
degenerate. The maximum of the ratio hr/pr in X is called its chunkiness parameter
[4]. The shape regularity condition is sometimes called the inscribed ball condition.

Let T be a reference element. If we consider about tetrahedrons, the tetrahe-
dron with vertices (0,0,0), (1,0,0)7, (0,1,0)7, and (0,0,1) " is typically taken as the
reference element 7. Let ¢(x) = Ax+ b be an affine transformation that maps TtoT,
where A is a 3 x 3 regular matrix and b € R3. Error analysis is first performed on the
reference element 7', Then, the pull back v o is used to transfer the result obtained on
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T to the “physical element” T. Let ||A|| denote the matrix norm of A associated with
the Euclidean norm of R? (d = 2, 3).
Under the shape regularity assumption, we have the following theorem.

Theorem 2 ([7], Theorem 3.1.4).  Let ¢ > 0 be a constant. If hp/pr < o,

then there exists a constant C' = C(T\,p,k,m) independent of T such that, for
v € Whtlr(T),

[v = Z0lmpr < CIAIMH AT ™ olisp.r

k+1
< C-ZL—|lpti1pr < (Co™RET "™ 0]y por.
T

If the chunkiness parameter of X’ is not small enough (say, o > 10), X is called
anisotropic. In numerical simulation, we sometimes need to introduce an adaptive
mesh refinement technique. In a process of mesh refinements, many anisotropic elements
may be generated. With such meshes, the standard theory of finite element methods
with the shape regularity assumption cannot be applied. The main purpose of this
manuscript is to explain the error analysis of Lagrange interpolation on tetrahedrons
without the shape regularity assumption.

[

Figure 1. Two anisotropic triangles; dagger: the maximum angle is not close to 7, and
the circumradius is not large (left), and brade: the maximum angle is close to m and
the circumradius is large (right).

Let T be a triangle and Ry be its circumradius. Anisotropic triangles can be
categorized into only two types as depicted in Figure 1 ([6]). Also, as is explained in
[15], the “badness” of an anisotropic triangle can be measured by Rr, and the following
theorem is known [15].

Theorem 3 (Circumradius estimates).  Let T be an arbitrary triangle. Then,
for the kth-order Lagrange interpolation ¥ on T, the estimation

Ry m _ _
v = Z|mpr < C (E) Rt M0l kg1 o = CRERET 2™ 0y o

holds for any v € W**TLP(T), where the constant C = C(k,m,p) is independent
of the geometry of T.

Note that by the laws of sines, we have

Rr 1

T
hy  2sinfp’ 3

<Or<m
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where 07 is the maximum inner angle of T'. Hence, if there exists a constant 0. < 7
and 07 < Onax, we have

Ry m _ _
v = Z|mpr < C (E) W T olga pr < CTRETT M0l

The condition 07 < #,.x is called the maximum angle condition with 6,,., for
triangles.

For the case of tetrahedrons, anisotropic tetrahedrons are usually categorized into
nine types as depicted in Figure 2 ([6]). Also, as we will see later, the radius of the
circumsphere does not represent the “badness” of an anisotropic tetrahedron. These
facts suggest that the analysis on anisotropic tetrahedrons is much more complicated
than the case of anisotropic triangles.

Figure 2. Nine anisotropic tetrahedorns; (top row from left) spire, spear, spindle, spike,
splinter, (bottom row from left) wedge, spade, cap, sliver.

Kiizek introduced the maximum angle condition for tetrahedrons [16].

Definition 4 (Maximum angle condition for tetrahedrons).  Let Opax, 7/2 <
Omax < ™ be a constant. Let T be an arbitrary tetrahedron. If all inner angles
of the faces of T', and all dihedral angles between two faces of T are less than or
equal to Omax, T is said to satisfy the maximum angle condition with 0, .y.

For the error analysis of Lagrange interpolation on tetrahedrons without the shape
regularity condition, the following theorem is known [16, 8|.

_4 -
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Theorem 5.  Let Opax, /2 < Omax < 7 be a constant. Suppose that a tetra-
hedron T satisfies the mazimum angle condition with Oy.x. Then, there exists a
constant C = C(Omax,p) with p > 2 such that

v —Z7vl1pr < Chrlolyp,r,

where C(Omax, p) = O((p — 2)72) as p \, 2.

By this theorem, we may say that, if a tetrahedron K satisfies the maximum angle
condition, the error of the linear Lagrange interpolation is of order O(hg) in LP-norm
with p > 2.

To extend the above estimation, a theorem similar to Theorem 3 was desired 2. For
that purpose, an immediate idea is to replace the circumradius of a triangle with the
radius of circumshpere of a tetrahedron. However, this idea can be immediately rejected
by considering the tetrahedron T with vertices x; := (h,0,0)7, x5 := (—h,0,0)",
x3 = (0,—h,h*)", x4 := (0,h,h*)T with h > 0 and a > 0. This tetrahedron is an
example of sliver (see Figure 2). Setting v(z,y,2) = 22 — h? + h?7%z, we see that
Ziv = 0, and a simple computation yields that |v — Zhv|1 cor = |V]1,007 > h*™* and
2,00,7 = 2. Hence, if @ > 2, an inequality such as the one given in Theorem 3 does not
hold for the tetrahedron, although the radius of circumshpere of the above T converges
to 0 as h — 0.

To express the “badness” of a tetrahedron, the following definition is given [11, 12].
Let h; (i = 1,---,6) be the length of edges of T with hy < .-+ < hg = hy := diamT.
Then, we define Ry by

lv

The following is the main theorem of this manuscript.

2Note that Apel [2] presents a different type of error analysis on anisotropic meshes.
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Theorem 6 (Main Theorem).  Let T' be an arbitrary tetrahedron and Rrp be
defined by (1). Let k and m be integers with k > 1 and 0 < m < k. Let p be taken
as

2<p<oo ifk—m=0,
(2) S<p<oo ifk=1,m=0,
1<p<oc ifk>2and k—m >1.

For the Lagrange interpolation ZXv of degree k on T, the following estimate holds:

U R+-\™
u€TF(T) |u‘k+1,p,T hy
Ry

v — I%v|m,p,T < Ck,m.p (h
T

m
) B ol Yo € WHELP(T),

where Clm.p 15 a constant depending on k, m, and p.

Remark. Note that, in (2) and Theorem 6, the restriction 2 < p for the case k = m
comes from the continuity of the trace operator v : W1P(T) 3 v + v|s € L(S), where
S C T is a non-degenerate segment (see [13, Section 3] and Lemma 19 in Appendix).
By the counterexamples given by Shenk [18] and the authors [14], we find that this
restriction cannot be improved.

For the maximum angle condition of tetrahedrons, we have the following theorem.

Theorem 7.  Let T be an arbitrary tetrahedron and Ry be defined by (1). Then,
T satisfies the mazimum angle condition with Oyax € [7/2,7), if and only if there
exists a fived constant D = D(Opnax) such that

Ry
— < D.
®) <

This theorem implies that, with Rp given in (1), the situation for tetrahedrons is very
similar to that of triangles. We immediately obtain the following corollary.

Corollary 8.  Let T be an arbitrary tetrahedron that satisfies the mazimum an-
gle condition with Omax € [7/2,m). Let k and m be integers with k > 1 and

0 <m < k. Let p be taken as (2). For the Lagrange interpolation Iéiv of degree k
on T, the following estimate holds.

[0 = Zvlmpr < Chp " ulkr1pr, Yo € WHEP(T),

where C' is a constant depending only on k, m, p, and Oy ax.

In the sequel of this lecture note, we will explain the proofs of Theorems 6, 7 in
detail.
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§ 2. Preliminaries

§2.1. Notation

A triangle with vertices x; (i = 1,2, 3) is denoted by Ax;x2x3. The edge connecting
x;, X; and its length are denoted by X;X; and |X;X;|, respectively.

§2.2. The Sobolev imbedding theorem

Let 1 < p < co. From Sobolev’s imbedding theorem and Morry’s inequality, we
have the continuous imbeddings

W2P(T) C CH'30(T), p>3,
W23(T) c WhH(T) c ¢O=3/9(T), Vg > 3,

WP(T) C WhSP/G=p)(T) € CO*3/¥(T), % <P,
W32(T) ¢ W2H(T) ¢ WH(T) € CO' ¥ U(T), Vg >3,

WAR(T) C W23/ G=p)(T) ¢ Wh3p/G=20)(T) ¢ COS=3/p(T) 1< p< .
’ 2
For the imbedding theorem, see [1] and [5]. Although Morry’s inequality may not be
applied, the continuous imbedding W3(T') ¢ C°(T) still holds. For proof of the critical
imbedding, see [1, Theorem 4.12] and [4, Lemma 4.3.4]. In the following, we assume
that p is taken so that the imbedding W*+L:P(T) C C°(T) holds, that is,

3
1<p<o0, ifk+1>3 and §<p§oo, ifk+1=2.

§2.3. Classification of tetrahedrons into two types

As noted in [2, 12, 15], to deal with arbitrary tetrahedrons (including anisotropic
ones) uniformly, we need to classify tetrahedrons into two types. Let T' be an arbitrary
tetrahedron. and x;, ¢ = 1,--- ,4 be its vertices. Let es be the shortest edge of T and
e1 be the longest edge connected to e5. We assume that x; and x5 are the endpoints of
e1. Let x3 be an endpoint of e; that is not an endpoint of e;. Then, e; and ey are edges
of Ax1x9x3. Note that we still have two cases for assigning x; and x5 as the endpoints
of e1.

Consider the plane that is perpendicular to e; and intersects e; at its midpoint.
Then, R? is divided by this plane into two half-spaces. In this situation, we have two
cases, and tetrahedrons are classified as either Type 1 or Type 2 accordingly:

e Case 1. If one half-space contains three vertices and the other half-space contains
one vertex, then T is classified as Type 1.

e Case 2. If the two half-spaces contain two vertices each, then 7' is classified as
Type 2.
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If the plane contains a vertex, then T is classified as Type 1.
We now introduce the following assignment of the vertices for each case.

e If T is Type 1, the endpoints of e; are x; and x3, and the face Ax;x3x4 belongs
to one half-space. Let ag := |x1x3].

e If T is Type 2, the endpoints of e; are xo and x3, and es; and X7x4 belongs to the

different half-spaces. Let ag := |x2X3].
Define ay := |x1x2| and a3 := |x1x4| for both cases.
X4

X2 X1

Figure 3. Tetrahedrons of Type 1 (left) and Type 2 (right).

§2.4. Standard position of tetrahedrons

For considering the geometry of tetrahedrons, it is convenient to assign coordi-
nates of their vertices explicitly. Suppose that an arbitrary tetrahedron 7' is taken and
classified as explained in Section 2.3. Let the parameters sq, t1, S21, S22, to be such that

(4)

S%-Ft%:l, s1>0, t1 >0, azslg%,
s51 + 83y +15=1,t3 >0, agsy <G

Suppose that T is Type 1. Then, using translation and rotation, we may move
T as x; — (0,0,0)7, xo + (a1,0,0)", and x5 ~ (23,y3,0)" with y3 > 0. Letting
0 = /xox1x3 and s; := cosf, t; := sinf > 0, we have 3 = ags1, Y3 = ast;.

Note that, by the assignment of vertices x; (i = 1,2,3), we have s; > 0 (otherwise
G
z-coordiate is negative). If so, we use mirror imaging with respect to zy-plain to make
it be above zy-plain (make its z-coordinate positive). Let (s21, Sa2,t2) := X1X4/|X1X4].

By these procedure, we may assume without loss of generality that T" of Type 1 is

|x1x2| < |x3%x2|) and ags; < In this situation, x4 might be below xy-plain (its

transformed to a tetrahedron with vertices
(5)(1 = (O,O,O)T, X9 = (041,0,0)T, X3 = (06281,062751,0)T, X4 = (a3821,a3822,a3t2)T.

(Recall that ay = |X7a3]|, ag = |X7a4|, and assa1 < ay/2 by the definition.)

_8-
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If T is Type 2, we may transform 7" to a tetrahedron with vertices

(6)

x; = (0,0,0)", xo = (a1,0,0)", x3 = (a1 — 281, a0t1,0) ", x4 = (3891, 3892, azta) ',

by a similar manner. We refer to the coordinates in (5), (6) as the standard position
of T. We always identify T with the tetrahedron with vertices (5), (6). Note that we

have

1
(7) |T| = galagagtltg,
where |T'| is the volume of T'.

§2.5. Reference tetrahedrons

Because we have two types of tetrahedrons, it is convenient to introduce two refer-
ence tetrahedrons to deal with them uniformly. Let T and T be tetrahedrons that have
the following vertices (see Figure 4):

T has the vertices (0,0,0)", (1,0,0)", (0,1,0)T, (0,0,1)7,
T has the vertices (0,0,0)7, (1,0,0)", (1,1,0)", (0,0,1)

1 (1)
Figure 4. The reference tetrahedrons 7' (left) and T’ (right).

These tetrahedrons are called the reference tetrahedrons. In the following, T
corresponds to tetrahedrons of Type 1 and T' corresponds tetrahedrons of Type 2. We
denote the reference tetrahedrons by T, that is, T is either of {T',T'}.

§2.6. Linear transformations

For an arbitrary tetrahedron 7" written as (5) or (6) with parameters (4), we con-
sider an affine transformation from the reference tetrahedrons. Define the matrices A,

-9.-
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A, Dy agas € GL(3,R) by

. 1 S1 S21 " 1 —S81 821 aq 00
(8) A:=10 tl S22 |, A:=1{0 tl S22 |, Da1a2a3 = 0 9 0 .
00 to 0 0 to 00 a3

We immediately confirm that the following lemma holds.

Lemma 9 ([14]).  Let T be an arbitrary tetrahedron in the standard position (5)
or (6) with parameters (4). Then, T' is transformed from the reference tetrahedron

T by T = A\DCHOQO(S( T) for Type 1, or T = ADa1a2a3( ) for Type 2.

The linear transformation defined by Dq,a,a4 is called the squeezing transformation
[15], and we will show that the squeezing transformation does not reduce approximation
property of Lagrange interpolation at all (see Theorem 11).

Note that A and A are decomposed as A= XY and A = XY with

10821 . 1810 - 1—810
X = 01822 s Y = Ot10 y Y = Otl 0 s
00 to 001 0 01

respectively. We consider the singular values of fT, Av, X, EA/, and Y. A straightforward
computation yields

det (XTX —pul) = (1—p) (0*—2u+13),
det ()A/TEA’ — ,ul) = det (?T? - uI) =(1—p) (,u2 —2u+ t%) .
1/2

Thus, we find that, setting s; := |s1] and so := (s3; + s3,)

IXI = (1 +82)% XY = (1—s2) V2,
V= Q+s)2, [V =0-s)"2 Y=Foy-=7,

2
©) A< H1+S )2 AT 1||<1_[ 2 A=Aor A=A
Note that
2
; - 1+s;)Y/2
10 2442=1,i=1,2 d |47 < —12 _ 1y (Lt
(10) s?+2=1,i=12 and | ||_1:] H ?

§2.7. Another geometric quantities of tetrahedrons

In (1), a quantity Ry is defined for a tetrahedron 7. Here, we define another
quantity Hp [12], which represent the geometry of T', by

10003 6hT

T — T, >
T t1to

HT =

where the last equation is from (7). Then, the following lemma holds [12, Lemma 3].

- 10 -
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Lemma 10. The two quantities Ry and Hp are equivalent. That is, for an
arbitrary tetrahedron T', we have

1
(11) §HT < Ry <2H7p.

Proof. Suppose that we have a triangle with the edge lengths hy < hy < hs. Then,
%hg < hy < hg. Let T be an arbitrary tetrahedron 7" in the standard position.
Case 1. Suppose that T is of Type 1. Set 8 := [Xax3|, 7 := |X3Xa|, and § = [XaXq].

By the definition of the standard position, we have
(6%} S min{a?n 57’7} S max{ag,,ﬂ,’y} S aq.
Hence, we have either h = oy or hy = §. Note that X3

the shortest edge of the triangle Ax;x5x4 because x; ar
belong to the same half-space.

Hence, we have a3 < § and
1
a1 < hp <2ap, or §hT <o <hyp.

So far, we realize that either hy = ag, hy = 3, or ho = 7. Recall that as = h;. In the
following, we check each case.

e Case of ho = a3. In this case, we have ajasaz = a1hihs, and

ajogas < hihoht < 2010003 amd Hr < Rp <2Hry.

e Case of ho = . Note that hy = 8 < a3, and XX and X;X3 are the longest and
shortest edges of Ax1x9x3, respectively. Therefore, we have

1 1
5063§§Oé1<5:h2§043§061-

This means that

1 1
5051052043 < hihoht < 2010903 and §HT < Rp <2Hr.

e Case of ho = . Note that hy = v < a3, and X;x4 and X;X3 are the longest and
shortest edges of Ax1x3xy, respectively. Therefore, we have

1
§a3<7:h2§a3.
This implies

1 1
50&10&20(3 < hihoht < 2010903 and §HT < Ry <2Hr.
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Case 2. Suppose that T is of Type 2. Set 8 := |x1x3|, 7 := |X3X4|, and § = |x2x4].
X4

By the definition of the standard position, we have
ag < min{S,~,d} < max{f,v,0} < a;.

Note that X1X3 is the longest edge of the triangle Axy
because x; and x4 belong to the same half-space. Henc
have a3 < 6 < a1 = hr.

X1

Therefore, we realize that either ho = a3, ho = 3, or hy = . In the following, we check
each case.

e Case of ho = a3. In this case, we have ajasaz = hihohr and Hy = Rp.

e Case of ho = . Note that hy = 8 < a3, and XX and X3X3 are the longest and
shortest edges of Ax1x9x3, respectively. Therefore, we have

1 1
5043§5061<5:h2§063§041~

This implies

1 1
§a1a2a3 < hihohr < ajasas and §HT < Ry < Hrp.

e Case of ho = . Note that hy = v < a3z < §, and XX, and X7X3 are the longest
and shortest edges of Axox3xy4, respectively. Therefore, we have

1 1
5043§§5<’V=h2§043§5-

This implies

1 1
50(10520(3 < hihoshr < ajasas and EHT < Rp < Hrp.

Therefore, all cases are checked and the proof is completed. [

Remark. In [14], the projected circumradius Ry is defined for a tetrahedron T as
follows. Take any facet B of T, and suppose that 7' is transformed by translation and
rotation so that B is on zy-plain. Let P,, be the perpendicular projection of R? onto
xz-plain; Py, (z,y,2) := (x,0,2). Note that the image P,,(7T') is a triangle, and let
Ry be its circumradius. Now, consider rotating 7' around the circumcenter of B on
xy-plain. Let Ty be the rotated tetrahedron, where 6 is the angle of the rotation. Let
Ry be the circumradius of P,,(T}) (see Figure 5). Then, define

Rp .= max Ry, Rr := min RPRB,
oc[—n/2,7/2] B hp

- 12 -
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Take a direction of the projection
at which Ry attains Rp.

Figure 5. The image of the projected circumradius of T'.

where Rp is the circumradius of B, hp := diamB, and the minimum is taken over all
the facets of 7. In [14], a theorem similar to Theorem 6 is proved using Rp. It is
conjectured that Ry defined by (1) and the projected circumradius ET are equivalent.

While the circumradius of a triangle is a good and simple geometric quantity that
represent its “badness” (or “goodness”), it is not so clear what is the best geometric
quantity of a tetrahedron that represents its “badness”.

§ 2.8. Squeezing theorem

As is explained in Section 2.4, we may assume without loss of generality that an
arbitrary tetrahedron 7' may be in the standard position. Let T, 04q5 = DT, where
the diagonal matrix D is defined in (8). We define the set 7.F(T') c W*T1r(T) by

p

THT) = {v e WHLP(T) | u(x) = 0, ¥x € zk(T)} .

Then, we have the following squeezing theorem.

Theorem 11.  Let k and m be integers with k > 1 and 0 < m < k. Let p
be taken as (2). Then, there exists a constant Cy ., p depending on k, m, p, but
independent of «; (i = 1,2,3) such that

’U| T k+1—m

m,k P m,p, alagag

By (Toyasas) i= sup < (.max ozi) Ch,m,p-
Uenk(Talazag) |U|k+1vpaTa1a2a3 i=1,2,

Proof. Because the proof is very similar to that of [15, Theorem 21], we give it in
Appendix. [J

- 13 -
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§3. Proof of Theorem 6

In this section, we prove Theorem 6 using the setting prepared so far. Suppose
that an arbitrary tetrahedron 7 is in the standard position. Recall that ' = AD(T)
and Ty, aqas := DT, where (A, T) = (fT, T) or (A, T) = (A,T) defined by (8) according
to the type of T. Let v € W**TLP(T) and © € WFHL™(T, ,.4,) be defined by o(x) =
v(Ax). Then, it follows from [15, Lemma 12] that

[l p < 3PP AT

3_(k+1)“(p)t1/p\|AH_(kH)|f)

P Tayagagz?
’k+17p7Ta1a2a3 S ”U|]f—|—1,p,T

Combining the above inequalities and Theorem 11, we obtain

v
Bloa oy At at e e
k+1,p, T ‘U|k+17pyTa1a2043

k+1—m
]AH"““HA_le ( max ai>
1=1,2,3

— L4y

< ¢k,m,pChym,p

AL AT R,

< ¢k,m,pChym,p

where ¢y, p := 3*+1Hm)1P) - Therefore, we obtain the following lemma.

Lemma 12.  For an arbitrary triangle T in the standard position, we have
v
BRI = s NI oA A

vETH(T) V|k+1,p,7
Therefore, inserting v — Thv € ’7;,’“ (T') into v, we have

[0 = Z0lmp1 < hmpChamp AN HIATH R T olkr1 7, Yo € WEELP(T).

We attempt to obtain upper bounds of ||A| and ||A~Y. From (9), (10), (1), and
(11), we know that

2 H 2
Al <2, At < 2= e 2fr
tito 3hr 3hr

Hence, redefining the constant Cj ., (recall that the Sobolev (semi-)norms may be
affected by rotation up to a constant [15, (16)]), Theorem 6 is proved.

§4. Proof of Theorem 7

In this section, we give a proof of Theorem 7. For the proof, we introduce the
following notation convention on T'. Let F; be the face of T opposite to x;. We denote the
dihedral angle between the faces F; and F; by *7. Note that 1)/ = ¢7*. Furthermore,
we denote the internal angle at x; on F; by 0%, and the angle between F; and X;X; by

‘ 7
5.
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Table 1. Notation convention on T (3,7 = 1,2,3,4, i # j).

X; | the vertices of T'.

F; | the face opposite to x;.

1*7 | the dihedral angle between F; and Fj.
07 | the internal angle of F; at x;.

¢; | the angle between F; and X;X;.

Xj Xj

Xk

Xn
Figure 6. Definitions of the angles on T

Let A and B be the feet of perpendicular lines from x; to F; and from x; to X, X,
respectively (see Figure 6). Then, we have

X%, | sin @), = |x; A| = |[x;B|sin ™ = [%;X,,| sin 0" sin ™.
A similar equation holds for ¢/, 6% and ¢*J. Therefore,

(12) sin ¢/ = sin 92 siny®7 = sin 0™ sin ™7
j=1,234, m,nke{1,2,3,4}\{j}.
In the following, we abbreviate “maximum angle condition” as MAC.

Lemma 13 (Cosine rules on tetrahedrons).  Let T C R? be a tetrahedron. Let
j=1,2,3,4 and {k,m,n} = {1,2,3,4}\{j}. Then, we have

kE _ m n : m n m,n
cosB; = cos 07" cos 07 + sin 07" sin 07 cos ™",

(13) cos ™™ = sin ™ sin ™ cos 0;“ — cos )™ cos ™.

Proof. See [10, 19]. O

- 15 -



KENTA KOBAYASHI - TAKUYA TSUCHIYA

Lemma 14. Let T C R? be a triangle and let 0; (i = 1,2,3) be the internal
angles of T with 01 < 03 < O5. If there exists Omax € [7/3,7) such that 035 < Opax, then
we have

- emax .
(14) sin 05, sinf3 > min {sin WT, sin Omax} .
Proof. Because 0, + 05 + 63 = m, the assumptions yield
™= emax
200 > 01 +0; =7 —03 > 7 — Onax and B a— < 0y <03 < Oax,
which implies (14). O
Lemma 15. For v € [n/3,7), we have
0< Tt oy
sin g + 1

Proof. This lemma can be proved immediately from

1
9§1i—:2@fﬂm1» <X T
2 2~ 72

T .y
Z < — < 1. O
sin 3 + 1 6 — = S

1
2 2

Lemma 16. Let T C R? be a tetrahedron. Suppose that T satisfies the MAC
with Omax € [7/3,7). Additionally, assume that 6 is not the minimum angle of face
F; = AP, P, Py, and 0) < 7/2, where j = 1,2,3,4 and {m,n,k} = {1,2,3,4}\{j}.
Then, setting § to

Y

0 1 1/2
sin g = COSQLX*' . 0<i<
sin =22 4 ]

b 3

we have either
@Zim’j >0, or wk’j > 9.

Proof. From Lemma 15, we have

c0S Opax + 1 <

0< — g <
Sln—f’;"—kl

L,

and we confirm that ¢ is well-defined.
The proof is by contradiction. Suppose that

0<9y™ <§ and 0<¢™ <4

Then, we have 0 < sin¢)"7 siny*7 < sin?¢§ and 1 > cos ™ cosp*7 > cos?§. From
Lemma 14 and the assumption, we have

™ — Hmax

2

j j _ernax . emax
§9£L<g, O<cos€%§cos(ﬂT):sm 5 -
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Thus, we obtain

max

sin 1)™7 sin "7 cos 67 < sin? § sin )

The cosine rule (13) and the above inequalities yield

COS me,k — sin wm,j Sinwk’j cos 9% — cos wm’j cos wk’j

0
< sin? § sin H;X — (1 —sin?9¢)
08 Omax + 1 ( . Omax
= Sin

sin —0“;" +1 2

+ 1) — 1 = cos Omax,

which contradicts the MAC: ™% < 0.y, O
Corollary 17. Under the assumptions of Lemma 16, we have
singy™7 > Cy, or siny®I > Cy, Cop := min{sin 4, sin O« }-

Lemma 18. Forj =1,2,3,4, let {m,n, k} ={1,2,3,4}\{j}. Letp € {m,n, k},
and {q,r} = {m,n,k}\{p}. Suppose that there exists a positive constant M with 0 <
M <1 such that sin ¢J sin0), > M. Then, setting v(M) =7 — sin™' M (2 <y(M) <
), the MAC with v(M) is satisfied on faces Fj, Fy, F,, and 79, 3" < ~v(M).

Proof. From the assumption, we have
M < sin (bf, sin H% < sin 6’% and M <sin <bf,.

Hence, the definition of v(M) yields 7 —~(M) < 6}, <~(M). Because 6}, +67, +6) =,
we see that 67 , 67 < 69, + 6 < ~(M). That is, the MAC with (M) is satisfied on face
Fj = APy PP
Moreover, it follows from (12) that
M <sin gb{, = sin ¢] sin Y?7 = sin 0, sin ™I
<sin6, sind, sin)™ , sin¢?7

By the same reasoning, we find that the MAC with (M) is satisfied on faces F, and
F,., and 79, 7" < ~(M). O

In the following, we prove Theorem 7 using Hp instead of Rp. We divide the proof
into four cases.
§4.1. Type 1: Proof of “MAC implies (3)”

First, we suppose that T" is of Type 1 and satisfies the MAC with Oyax, 7/3 <
Omax < 7. Because |T| = gajapas sin 61 sin ¢7, we have

HT . 10903 . 6
hr  |T|  sin@fsing?’
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From the definition of Type 1, we realize that 5 < 07 < 63, that is, 03 and 03 are the

maximum and minimum angles of face F, = AP, P, Ps, respectively. Thus, it follows

from Lemma 14 that
™ —0

% < 9‘1L < Omax, sin 0‘11 > min {sin

™

_emax .
T,sm&nax} =: (.

Additionally, we may apply Lemma 16 to 67 and Fj, and find that either %% > § or
Y34 > §, where § = §(Omax), 0 < 6 < 7/2 is defined as

1/2
coS Opax + 1)

sin —9"5“‘ +1

(15) sind = (

Suppose that 1?4 > §. By Corollary 17 and (12), we have
sin ¢ = sin 07 sin y>* > Cysin 67,

where Cj is the constant defined in Corollary 17. By the definition of Type 1, 2 is not
the minimum angle of Fo = AP, P3P,, and therefore, we have
™ = emax 2 . 2
T S 91 S 0max» SlIl91 Z Cl-
Thus, we obtain sin qzﬁ‘lL > CyC].
Next, suppose that 134 > §. Replacing 24, 67, and F, with ¢34, 63, and F3 in
the above argument, we obtain sin ¢{ > CyC} in the same manner.
Gathering the above results, we conclude that
Hrp 6 6

— = < =D
hr  sinffsing] — CoC?

in both cases, that is, (3) holds.

§4.2. Type 1: Proof of “(3) implies MAC”

Now, we suppose that T is of Type 1 and

ﬂ _ 13 — 6 <D.
hr T sin 0} sin ¢F —

Because 07 < 7/2 and sin 61 sin ¢7 < 1, we have
. 04 - 4 6
sm9151n¢125:: M, 0<M<1.

By Lemma 18 with j = 4 and p = 1, setting v(M) := m —sin~' M, we have 7 <7y(M)<
7, and the MAC with (M) is satisfied on Fy, F3, Fy, and ¢?%, ¢34 < ~v(M).
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Note that |T'| = $agazassin 65 sin ¢F, and we have
H
_T _ 13 — 6 <D.
hr T sin 03 sin ¢ —

Thus, by Lemma 18 with j = 3 and p = 1, we find that 23 < ~(M).
Because |P3Py| < |PiPy| + |P1Ps| < 2a3 on Fy = AP P3Py and |PyPs| < aq, we
note that

1 1
|T| —042|P2P3||P3P4| sin 03 sin ¢3 < 30&10&2053 sin 83 sin ¢3

Thus, we have

Hy 3 3 M
D> d sinfisingg > — = —.
Z e > Sin 01 sin 61 an sin 03 sin ¢35 > D

From Lemma 18, setting v(M/2) := 7 —sin™ ' (M/2), we have T < v(M/2) < 7 and
MAC with v(M/2) is satisfied on Fy, and ¢!, ! < ~v(M/2).
The final thing to prove is the MAC for 3. From the cosine rule (13), we have

cos 1 = siny®* sin ! cos 05 — cos>* cos L.

By the definition of Type 1, the angle 65 is the minimum angle of Fy = AP, P,P3, and
therefore, we have

. .
cos 63 > o0 sin Pp3tsinytl cosfy >0, and cosypt® > —cosyp>? cos it

From the above argument, we have siny>* > M, siny*! > M/2, and

cos ! > — cos > cos P! > —| cos || cos |
_ _\/1 — sin? ¢3,4\/1 —sin? 4l > —y/1— M24/1— MT2 > 1.
Therefore, we conclude that
Pp1? < cos™! (—m 1-— MTQ) < m,
and T satisfies the MAC with

Qmaxzzmax{ (M/2),cos™ ( V1—-M 1__)}

§4.3. Type 2: Proof of “MAC implies (3)”

First, we suppose that T is of Type 2 and satisfies the MAC with 0.« € [7/3, 7).
The proof is very similar to that described in Section 4.1.
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By the definition of Type 2, ag = |P1 Py| < | P2 Py|. Because
1 1 I
|T| = 6&10{2013 sin 63 sin ¢] = 6a1a2\P2P4| sin 63 sin ¢,

we have

Hr  ojopos 6 6
hr  |T|  sinfising} ~— sinf3sings’

(16)

From the definition of Type 2, we realize that 0] < 65 < 03 on Fy, 63 < 63 <603 on F3,
and 03 is not the minimum angle of Fy. Thus, it follows from Lemma 14 that

m™—0 ] i i
g <03, 08,03 < fmax, sind;, sin6], sin6; > 1.

Additionally, we may apply Lemma 16 to 65 and Fy, and find that either 1'% > § or
34 > §, where 0 = §(0max) is defined by (15).
Suppose that 3% > §. Using the same argument as in Section 4.1, we have

sin gb‘ll = sin 9:1)’ sin ¢3’4 > (g sin 9:1)’ > CyC].
Next, suppose that 1'% > §. We have

sin ¢ = sin 03 sinp* > Cysin ) > Cy ;.
Combining these results with (16), we obtain

Hr 6
<
hr = CoC?

=: D,
that is, (3) holds.

§4.4. Type 2: Proof of “(3) implies MAC”
Finally, we suppose that T is of Type 2 and

Hr  ojopas 6
hr  |T| — sinf}singf

<D, sinf;sin¢} > % =: M.

The proof is very similar to that described in Section 4.2. By Lemma 18 with j = 4
and p = 1, setting y(M) := m — sin~ ' M, the MAC with ~(M) is satisfied on Fy, F3,
Fy, and ¢24, ¢34 < y(M).

Because |P,Py| < a1, we have

1 1
IT| = 5|P2P3||P2P4||P1P4| sin 03 sin ¢ < Fo1aagsin 03 sin ¢j.

This yields

H
Dz—Tz# and sin@%sind)}lz

=M
. 1 .2 1 9
hr — sinf;sin ¢y

Sl
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and, by Lemma 18 with j = 1 and p = 4, we find that the MAC with (M) is satisfied
on Fy, and 12, 13 < ~(M).
The final thing to prove is the MAC for 1'% and ¥?3. By the cosine rule (13) with
J = 2, we have
cos 1t = sin 1?3 sin *3 cos 05’ — cos 13 cos 3,

cos 1?3 = sinp?* sin > cos 0] — cos > cos 4.

By the definition of Type 2, 65 and 07 are the minimum angles of F3 and F}, respectively.

Therefore, we have cos 63, cos 07 > % and thus
cos bt > —cos ! cos 34, cos h?® > — cosp?* cos L.

Because sin 3, siny?4, siny®* > M, we find that

cos bt > — cos 13 cos >t > —\/1 — sin? ¢173\/1 —sin? ¢34 > M? — 1,
cosp?3 > M? — 1.

Therefore, we conclude that 14, 1?3 < cos™1(M? — 1) < 7, and T satisfies the MAC
with

Omax := max {y(M),cos™ ' (M* —1)}.
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Appendix: Proof of Theorem 11 The proof of Theorem 11 is very similar to that of
[13, Theorem 13] and [15, Theorem 21]. First, refer to [15, Section 5] for the definition
of difference quotients of one and two variable functions. Difference quotients of three
variable functions is their simple extension.

For a positive integer k, X* is the set of lattice points defined by

’YGN?}},

where v/k = (a1/k,as/k,a3/k) is understood as the coordinate of a point in R3. For
x, €X k and a multi-index ¢ € N3, we define the correspondence A® between nodes by
A%, =X y5 = (v +0)/k.

For two multi-indexes n = (mq,msa, m3), 06 = (n1,n2,n3), n < J means that m; < n;
(i =1,2,3). Also, 6 - and 0! are defined by § - n := Zf’:l m;n; and 6! := nqlna!ng!,
respectively. Suppose that, for 7,6 € N3, both x., and A5X7 belong to K. Then, we
define the difference quotients for f € C°(K) by

Xk .= {x7 ::%GR?’

1)[61=Inl

fw [va Aéxw] = kIl ;S (77_,<5)—_ )] f(A"xv).

For example, we see that

k4
— (f(xe21,1)) —2f(xa,1,1) + f(X0,1,1))

f4[x(0,0,0),A(Q’l’l)x(o,o,o)] = 5

f(x2,0,1)) +2f(x1,01)) — f(%X(0,0,1))
F(xe,1,0) +2f(X1,1,00) — f(
f(%2,0,0) — 2f(X(1,0,0y) + f(

- X(0,1,0))

+ X(0,0,0)))-
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As explained in [15, Section 5], a differential quotients is expressed concisely by an
integral. For that purpose, we introduce the s-simplex

S == {(:I;l,--- ,xs)TERs\xizO, O§x1+---+x3§1},
and the integral of g € L1(S;) on S is defined by

w1 Ws—1
/ g(wy, - - ) AWy .—/ / / g(wy, -+ ,wg)dws - - - dwadwy,
Ss
where dWy 1= dw; - - - dws. Then, f*[xq,), A5%x ] becomes

S, 1 r
PP %@ A%, )]—/ 900 f (E -+ k(w1+~-+ws),E) AW,

For a general multi-index (t, s, m), we can write

ft+s+m [X(l,q,r)v A(t’smﬂb)x(l,q,r)] = / /S / a(t,s,m)f (Zta W57 Ym) dthWdem7

[ 1 1
Zi = —+—(21+ -+ 2), dZy :=dz -~ - dzy, Wy ::g+—(w1—|—--~—|—ws),
E ok ko k
1
Y=+ () dY = dyr - dy.

ko k

Let D‘fy be the rectangular parallelepiped defined by x, and A‘sx7 as the diagonal
points. If § = (¢,s,0) or (0,s O) l:l‘S degenerates to a rectangle or a segment. For

v € LY(K) and D5 with v = (I, q,r), we denote the integral as

/ /// (Zt, Ws,Ym)dZidWedY .
Dgyt,s,m) S;

If Disy degenerates to a rectangle or a segment, the integral is understood as an integral on
the rectangle or on the segment. By this notation, the difference quotient f!°! (%, A‘wa]
is written as

Flxy, A%x,] = / Ff.
0
Therefore, if u € 7,F(T), then we have

(17) 0=ubl[x,, A%%, ] = u, VDi c T.
=}

Let S C T be a segment. In the proof of Theorem 11, the continuity of the trace
operator ¢ defined as t : WYP(T) 3 v +— v|g € L1(S) is crucial. For two-dimensional
case, the continuity of ¢ is standard and is mentioned in many textbooks such as [5]. For
three dimensional case, the situation becomes a bit more complicated. If the continuous
inclusion W**12(T) C C°(T) holds, the continuity of ¢ is obvious. Even if this is not
the case, we still have the following lemma. For the proof, see [1, Theorem 4.12], [8,
Lemma 2.2], and [17, Theorem 2.1].
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Lemma 19. Let S C T be an arbitrary segment. Then, the following trace
operators are well-defined and continuous:

t: WhP(T) = LP(S), 2<p< oo, t: W>P(T) — LP(S), 1<p< oo,

Let p be taken as (2). The set Eg’k C WkH1=18lp(T) is then defined by

2ok = {u e whri=lolr(T) ’ /Dé v=0, VOcC T} :

Note that u € 7;’“(T) implies 3%u € Eg’k by (17).

Lemma 20. We have Eg’k NPr_is) = {0}. That is, if ¢ € P_5 belongs to Ef;’“,
then q = 0.

Proof. Note that dimPj,_5 = #{DESY C T}. For example, if k£ = 4 and |§| = 3,
then dimP; = 4. This corresponds to the fact that, in T, there are four cubes of size
1/4 for 6 = (1,1,1) and there are four rectangles of size 1/2 x 1/4 for § = (1,2,0). All
their vertices (corners) belong to ¥4(T) (see Figure 7). Now, suppose that ¢ € Pr—s]
satisfies fDi qg = 0 for all DESY C T. These conditions are linearly independent and

determine g = 0 uniquely (see Exercise below). O

Figure 7. The four cubes and four rectangles in T.

Exercise: Show that the condition * fmé qg = 0 for all Di;y C T” implies ¢ = 0 for
q € Pr—j5)- (Hint: (1) First, consider the case d = 1. For example, show the following:
if a polynomial p € P}, satisfies f:“ p(x)de =0, n=0,--- ,k, then p=0.)

(2) Reduce the proof of the case d > 1 to that of the case d — 1.

The constant Ag’k is defined by

ABF = up V0w
veEg’k |v|k+1—|5|,p,T

The following lemma is an extension of [3, Lemma 2.1].
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Lemma 21. Let p be such that 2 <p < oo ifk+1—|0|=1o0r1 <p < oo if
k+1—[6] >2. We then have AS* < co.

Proof. The proof is by contradiction. Suppose that Ag’k = o0. Then there exists a
sequence {wy 52, C = * such that |wy]opr = 1 and lim,, [Wn k+1—|6,p,7 = 0. By
the Bramble-Hilbert lemma [15, Theorem 14], there exists {g,} C Pj_5 such that

. 1 1
|wn + @nll k116, p,7 < qéfiw |wn + qllk+1-15),p,7 + —< Clwn|ps1-15),p,T + -
and lim [lw, + gnllg+1-j5pr = 0. Because {w,} C W H1=Il?(T) is bounded,

n—oo

{gn} C Pr_y5) is bounded as well. Hence, there exists a subsequence {g,, } such that g,,
converges to q¢ € Pj_j5) and lim,, oo [|[Wn, + qllk+1-|6,p,0 = 0. If D?p is not degenerate
to a rectangle or a segment, we have

[, o+
0y,

If D?p is degenerate to a rectangle or a segment, (18) holds as well by Lemma 19.
Because [5 wn, = 0 by the definition, we have
lp

(18) < /IZI5 |wn; + 4| < Cllwn; + qllr+1-15,p,x =0 ash—0.

lp

n; —00

0= lim (wn, +q) = / q, VD?p cT.
0 o3

Therefore, it follows from Lemma 19 that ¢ = 0. This implies that

0= lm |lwles1-j5pm > lm fwnfopr =1,

which is a contradiction. [
Define the linear transformation by, for (z,y,2)" € R3,

(2%, 4%, 2") " = Dayanas (2,7, 2) " = (12, a0y, azz) T, a; >0,1=1,2,3,
which the diagonal matrix Dy, 4,04 18 defined by (8). This linear transformation squeezes
the reference tetrahedron T perpendicularly to T\, asa05 = Dajasas L. Take an arbitrary
v € TF(Tayasas) and define v € TJ(T) by u(z,y,2) == v(Dayasas (T, y,2) 7). Let p
be taken as (2) with m = [4|. To make formula concise, we introduce the following
notation. For a multi-index v = (a,b,c) € N3 and a real ¢ # 0, and () := (a1, a2, a3),
(a)" := affalas’. Because u € TF(T) and 9°u € 5%, we may apply Lemma 21 as
follows. For p, 1 < p < oo, we have

P
[0l mp,Tojagas ZM =m 71( @)~ 7p|87u|0, ,T

(k+1)!
1 T anes st i () =07 |ulf
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S (@) (07l
_ k+1—m)!
E:WI7n'v( @) Wp<§:MF4HJ—WzLﬁﬁEm;'MM(aWU)&gT)
(maxj—12,300) T L B (@) TP O[],

T e 207 (S i 0@, )

(maxjmgp o) PSS )P 00wl g
Z|fy| =m Al ( ) P |87ulz+1—m,p,T
(maxi—r 25 00) YL (@) 0l

1
St 5 @) (A7) J070lg

(k+1—m)p
<CP max o;
komp \ i =1723 '

where Ch,m, p = maxy =, A" Here, we use the equality

(E+1)! m! (k+1—m)!

st 2 ~l n! ’
Y+n=4

Iv[=m,[n|=k+1-m

Hence, Theorem 11 is proved for this case. The proof of the case p = co may be done
in a similar manner. [

Exercise: (1) Check the above proof in detail. For example, confirm that, if k = m = 1,

(19) can be written as

[0lY p.1.

1 — p
LpTojagay Z|’V| 7—(0&) 7p|éwu|0pT
2!

‘v’g,p,Ta

<

rapes 2ps=2 51 ()P |O%ulfg

0.l + L loyulf + L0l
#WMUIP + %la yu|p + %p’azzmg + @Wwyﬂg + #alﬂayzu% + ﬁ‘a’:mu’g
10,08+ 10,ulf + L 10.ul

1
¥X+@Y+gz

(X’:sz|8xacu|g+ai§|axyu|g+%|6xzu|g7 Y':Lzl)‘axyu‘g‘ké'ayyu'g"'%|6yzu|g:
Z':%|82$u|8+%|8zyu|g+%|azzu|g)

(maxiz 2,5 00)" ( rl0pulf + L 10,ulf + Lrl0-ulf)

%ﬂ@mUVf + a—112)|3yu|11) + C%gmzuﬁ

<X2M|azu|f, Y2M|8yu|11°, Z2M|82u|110, M:=(max;=1,2,3 ai)_p>
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ERROR ANALYSIS WITHOUT THE SHAPE-REGULARITY ASSUMPTION

p (Aél,O,O),l)p
af

a_1f|a:cu|f + %g|3yulf + %Wﬂl’f

A(O,I,O),l /2 A(0,0,l),l /2
(max;—1,2,3 ;) Opulf + “2 ol Zloyult + %"%Uﬁ)

<

P
p . — (1,0,0),1  4(0,1,0),1 4(0,0,1),1
<Cii, (Zrznlagcg az) , Ciip = max{Ap Ay ;A 1.

(2) Prove Theorem 11 for the case p = cc.
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