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Abstract

In the error analysis of finite element methods, the shape regularity assumption on

triangulations is typically imposed to obtain a priori error estimations. In practical

computations, however, very “thin” or “degenerated” elements that violate the shape

regularity assumption may appear when we use adaptive mesh refinement. In this

survey, we attempt to establish an error analysis approach without the shape regularity

assumption on triangulations.

We have presented several papers on the error analysis of finite element methods

on non-shape regular triangulations. The main points in these papers are that, in the

error estimates of finite element methods, the circumradius of the triangles is one of the

most important factors.

The purpose of this survey is to provide a simple and plain explanation of the

results to researchers and, in particular, graduate students who are interested in the

subject. Therefore, this survey is not intended to be a research paper. We hope that,

in the near future, it will be merged into a textbook on the mathematical theory of the

finite element methods.
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§ 1. Introduction: Lagrange interpolation on triangles

Lagrange interpolation on triangles and the associated error estimates are im-

portant subjects in numerical analysis. In particular, they are crucial in the error

analysis of finite element methods. Throughout this survey, K ⊂ R2 denotes a tri-

angle with vertices xi, i = 1, 2, 3. In this survey, we always assume that triangles

are closed sets. Let λi be the barycentric coordinates of K with respect to xi. By

definition, 0 ≤ λi ≤ 1,
∑3

i=1 λi = 1. Let N0 be the set of nonnegative integers, and

γ = (a1, a2, a3) ∈ N3
0 be a multi-index. Let k be a positive integer. If |γ| :=

∑d+1
i=1 ai = k,

then γ/k := (a1/k, a2/k, a3/k) can be regarded as a barycentric coordinate in K. The

set Σk(K) of points on K is defined as 1

(1) Σk(K) :=
{γ
k
∈ K

∣∣∣ |γ| = k, γ ∈ N3
0

}
.

Figure 1. Set Σk(K), k = 1, k = 2, k = 3.

Let Pk(K) be a set of polynomials defined on K whose degree is at most k. For a

continuous function v ∈ C0(K), the kth-order Lagrange interpolation Ik
Kv ∈ Pk(K) is

defined as

v(x) = (Ik
Kv)(x), ∀x ∈ Σk(K).

To enable the error analysis of Lagrange interpolation, we typically introduce the

following condition [8, 6, 10]. Let hK := diamK and ρK be the diameter of its inscribed

circle. Suppose that X is a set of (possibly infinitely many) triangles.

Assumption 1 (Shape regularity). The set X is called shape regular if there
exists a constant σ > 0 such that

hK

ρK
≤ σ, ∀K ∈ X.

The maximum of the ratio hK/ρK in X is called its chunkiness parameter [6]. The

shape regularity condition is sometimes also called the inscribed ball condition. For

more information on the conditions equivalent to shape regularity, see [9].

Let K̂ be a reference element. The triangle with vertices (0, 0)⊤, (1, 0)⊤, and

(0, 1)⊤ is typically taken as the reference triangle K̂. Let φ(x) = Ax + b be an affine

transformation that maps K̂ to K, where A is a 2× 2 regular matrix and b ∈ R2.
1The set Σk(K) is sometimes called a stencil.
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Error analysis without the shape-regularity assumption

Error analysis is first performed on the reference element K̂. Then, the “pull back”

with v ◦ φ is used to transfer the result obtained on K̂ to the “physical element” K.

Let ∥A∥ denote the matrix norm of A associated with the Euclidean norm of R2,

and let 1 ≤ p ≤ ∞. The function v ∈ W k+1,p(K) is pulled back by φ as v̂ := v ◦ φ.

Let k and m be integers such that k ≥ 1 and 0 ≤ m ≤ k. The following theorem is

standard.

Theorem 2 ([8], Theorem 3.1.4). Let σ > 0 be a constant. If hK/ρK ≤ σ,

then there exists a constant C = C(K̂, p, k,m) independent of K such that, for
v ∈ W k+1,p(K),

|v − Ik
Kv|m,p,K ≤ C∥A∥k+1∥A−1∥m|v|k+1,p,K

≤ C
hk+1
K

ρmK
|v|k+1,p,K ≤ (Cσm)hk+1−m

K |v|k+1,p,K .(2)

To derive the second inequality in (2), we use the following lemma.

Lemma 3 ([8], Theorem 3.1.3). We have ∥A∥ ≤ hKρ−1

K̂
, ∥A−1∥ ≤ hK̂ρ−1

K .

Let K be an arbitrary triangle, and hK ≥ α ≥ β > 0 be the lengths of its three

edges. Note that hK/2 < α ≤ hK . Using translation, rotation, and mirror imaging, K is

transformed into a triangle with vertices x1 = (0, 0)⊤, x2 = (α, 0)⊤, and x3 = (βs, βt)⊤,

where s = cos θ, t = sin θ, and 0 < θ < π is the inner angle of K at x1. This triangle is

called the standard position of K. By the law of cosines,

h2
K = α2 + β2 − 2αβ cos θ and cos θ =

β

2α
+

α2 − h2
K

2αβ
≤ β

2α
≤ 1

2
.

Hence, π/3 ≤ θ < π.

x1 x2

x3

α

hK
β

θ K

Figure 2. General triangle K in the standard position. The vertices are x1 = (0, 0)⊤,
x2 = (α, 0)⊤, and x3 = (βs, βt)⊤, where s2 + t2 = 1, t > 0. We assume that 0 < β ≤
α ≤ hK .
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These assumptions imply that the affine transformation φ can be written as φ(x) =

Ax with the matrix

A =

(
α βs
0 βt

)
.(3)

We set t = sin θ = 1, for example (i.e., K is a right triangle). Then, s = 0, ∥A∥ = α,

∥A−1∥ = 1/β, and the inequalities in (16) can be rearranged as

|v − Ik
Kv|m,p,K ≤ C

αk+1

βm
|v|k+1,p,K ≤ C

(
α

β

)m

hk+1−m
K |v|k+1,p,K .(4)

Thus, we might consider that the ratio α/β should not be too large, or K should not

be too “flat.” This consideration is expressed as the minimum angle condition (Zlámal

[28], Žeńı̌sek [27]), which is equivalent to the shape regularity condition for triangles.

Theorem 4 (Minimum angle condition). Let θ0, (0 < θ0 ≤ π/3) be a constant.
If any angle θ of K satisfies θ ≥ θ0 and hK ≤ 1, then there exists a constant
C = C(θ0) independent of hK such that

|v − I1
Kv|1,2,K ≤ ChK |v|2,2,K , ∀v ∈ H2(K).

However, the minimum angle condition and shape regularity are not necessarily

needed to obtain an error estimate. The following condition is well known (Babuška–

Aziz [4]).

Theorem 5 (Maximum angle condition). Let θ1, (π/3 ≤ θ1 < π) be a con-
stant. If any angle θ of K satisfies θ ≤ θ1 and hK ≤ 1, then there exists a
constant C = C(θ1) that is independent of hK such that

(5) |v − I1
Kv|1,2,K ≤ ChK |v|2,2,K , ∀v ∈ H2(K).

Kř́ıžek [19] introduced the semiregularity condition, which is equivalent to the max-

imum angle condition (see Remark below). Let RK be the circumradius of K.

Theorem 6 (Semiregularity condition). Let p > 1 and σ > 0 be a constant.
If RK/hK ≤ σ and hK ≤ 1, then there exists a constant C = C(σ) that is
independent of hK such that

|v − I1
Kv|1,p,K ≤ ChK |v|2,p,K , ∀v ∈ W 2,p(K).

We mention a few more known results. Jamet [13] presented the following results.

Theorem 7. Let 1 ≤ p ≤ ∞. Let m ≥ 0, k ≥ 1 be integers such that k+1−m >
2/p (1 < p ≤ ∞) or k −m ≥ 1 (p = 1). Then, the following estimate holds:

|v − Ik
Kv|m,p,K ≤ C

hk+1−m
K

cosm θK/2
|v|k+1,p,K , ∀v ∈ W k+1,p(K),

where θK is the maximum angle of K, and C depends only on k and p.
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Error analysis without the shape-regularity assumption

Remark: (1) In Theorem 7, the restriction on p comes from the Sobolev imbedding

theorem. Note that in [13, Théorème 3.1] the case p = 1 is not mentioned explicitly

but clearly holds for triangles (see Section 2.5). For the case of the maximum angle

condition, we set k = m = 1 and find that Jamet’s result (Theorem 7) does not imply

the estimation (5) because the case p = 2 is excluded.

(2) Let an arbitrary triangle K be in its standard position (Figure 2). Then θ is the

maximum internal angle of K, and

RK

hK
=

1

2 sin θ
,

π

3
≤ θ < π(6)

by the law of sines. Thus, the dimensionless quantity RK/hK represents the maximum

internal angle of K, and the boundedness of RK/hK , which is the semiregularity of K,

is equivalent to the maximum angle condition θ ≤ θ1 < π with a fixed constant θ1. □

For further results of the error estimations on “skinny elements”, see the monograph

by Apel [2].

Recently, Kobayashi, one of the authors, obtained the following epoch-making result

[14]. Let A, B, and C be the lengths of the three edges of K and S be the area of K.

Theorem 8 (Kobayashi’s formula). We define the constant C(K) as

C(K) :=

√
A2B2C2

16S2
− A2 +B2 + C2

30
− S2

5

(
1

A2
+

1

B2
+

1

C2

)
.

Then the following holds:

|v − I1
Kv|1,2,K ≤ C(K)|v|2,2,K , ∀v ∈ H2(K).

Recall that RK is the circumradius of K and is written as 2

RK =
ABC

4S
.(7)

Then, we immediately realize that C(K) < RK and obtain a corollary of Kobayashi’s

formula.

Corollary 9. For any triangle K ⊂ R2, the following estimate holds:

(8) |v − I1
Kv|1,2,K ≤ RK |v|2,2,K , ∀v ∈ H2(K).

This corollary demonstrates that even if the minimum angle is very small or the

maximum angle is very close to π, the error |v−I1
Kv|1,K converges to 0 if RK converges

2This formula is proved using the law of sines.
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to 0. We consider the isosceles triangle K shown in Figure 3 (left). Using (7), we realize

that RK = hα/2 + h2−α/8 = O(h2−α) (α ≥ 1, h ≤ 1). Thus, if α < 2, RK → 0 as

h → 0.

As another example, let α, β ∈ R satisfy 1 < α < β < 1 + α. We consider the

triangle K whose vertices are (0, 0)⊤, (h, 0)⊤, and (hα, hβ)⊤ (Figure 3 (right)). With

(7), it is straightforward to see

RK =
h
(
h2α + h2β

)1/2 (
(hα − h)2 + h2β

)1/2
2h1+β

=
h1+α

2hβ

(
1 + h2β−2α

)1/2 (
1 + h2α−2 − 2hα−1 + h2β−2

)1/2
= O(h1+α−β),

ρK =
h1+β

h+ (h2α + h2β)
1/2

+ ((hα − h)2 + h2β)
1/2

,
hβ

3
< ρK < hβ .

Hence, if h → 0, the convergence rates that (2) and (8) yield areO(h2−β) andO(h1+α−β),

respectively. Therefore, (8) obtains a better convergence rate than (2). Moreover, if

β ≥ 2, (2) does not yield convergence whereas (8) does. Note that, when h → 0, the

maximum angles of K approach to π in both cases.

h

h
α

h

(hα, hβ)⊤

Figure 3. Examples of triangles that violate the maximum angle condition but satisfy
RK → 0 as h → 0.

Although Kobayashi’s formula is remarkable, its proof is long and needs validated

numerical computation. We began this research to provide a “paper-and-pencil” proof

of (8), and recently reported an error estimation in terms of the circumradius of a

triangle [15, 17, 18].

Theorem 10 (Circumradius estimates). Let K be an arbitrary triangle. Then,
for the kth-order Lagrange interpolation Ik

K on K, the estimation

|v − Ik
Kv|m,p,K ≤ C

(
RK

hK

)m

hk+1−m
K |v|k+1,p,K = CRm

Khk+1−2m
K |v|k+1,p,K

holds for any v ∈ W k+1,p(K), where the constant C = C(k,m, p) is independent
of the geometry of K.

We recall that a general triangle K may be written using the settings in Figure 2.
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Error analysis without the shape-regularity assumption

The essence of the proof of Theorem 10 is that the matrix A in (3) is decomposed as

A = ÃDαβ , Ã :=

(
1 s
0 t

)
, Dαβ :=

(
α 0
0 β

)
.

With this decomposition, the estimate (2) is rearranged as

|v − Ik
Kv|m,p,K ≤ C∥Ã∥k+1∥Ã−1∥m∥Dαβ∥k+1∥D−1

αβ∥
m|v|k+1,p,K .

As indicated by us [18] and Babuška–Aziz [4], the linear transformation by Dαβ does

not reduce the approximation property of Lagrange interpolation, and only Ã could

make it “bad.” This means that the term

∥Dαβ∥k+1∥D−1
αβ∥

m =
(max{α, β})k+1

(min{α, β})m
may be replaced with C1h

k+1−m
K .

Furthermore, ∥Ã∥ and ∥Ã−1∥ (the maximum singular values of Ã and Ã−1) are bounded

using the circumradius RK and hK as

∥Ã∥k+1∥Ã−1∥m ≤ C2

(
RK

hK

)m

,
RK

hK
=

1

2 sin θ
,

where θ is the maximum internal angle of K (see Figure 2 and (6)). We emphasize

that the constants Ci (i = 1, 2) only depend on k, m, and p. Note that, by setting

t = 1 and β = α2 in (2) (and (4)), we realize that, regardless of how much we try to

analyze ∥A∥k+1∥A−1∥m, we cannot prove Theorem 10. In the sequel of this survey, we

will explain the proof of Theorem 10 in detail.

§ 2. Preliminaries

§ 2.1. Notation

Let n ≥ 1 be a positive integer and Rn be n-dimensional Euclidean space. We

denote the Euclidean norm of x ∈ Rn by |x|. Let Rn∗ := {l : Rn → R : l is linear} be

the dual space of Rn. We always regard x ∈ Rn as a column vector and a ∈ Rn∗ as a

row vector. For a matrix A and x ∈ Rn, A⊤ and x⊤ denote their transpositions. For

matrices A = (aij)i,j=1,··· ,n and B = (bij)i,j=1,··· ,n, their Kronecker product A ⊗ B is

an n2 × n2 matrix defined as

A⊗B :=

a11B · · · a1nB
...

...
an1B · · · annB

 .

For matrices Ai, i = 1, · · · , k, the Kronecker product A1⊗· · ·⊗Ak is defined recursively.

For a differentiable function f with n variables, its gradient ∇f = gradf ∈ Rn∗ is

the row vector defined as

∇f = ∇xf :=

(
∂f

∂x1
, · · · , ∂f

∂xn

)
, x := (x1, · · · , xn)

⊤.
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Let N0 be the set of nonnegative integers. For δ = (δ1, ..., δn) ∈ (N0)
n, the multi-

index ∂δ of partial differentiation (in the sense of distribution) is defined by

∂δ = ∂δ
x :=

∂|δ|

∂xδ1
1 · · · ∂xδn

n

, |δ| := δ1 + · · ·+ δn.

For two multi-indices η = (η1, · · · , ηn), δ = (δ1, · · · , δn), η ≤ δ means that ηi ≤ δi
(i = 1, · · · , n). Additionally, δ · η and δ! are defined as δ · η := η1δ1 + · · · + ηnδn and

δ! := δ1! · · · δn!, respectively.
Let Ω ⊂ Rn be a (bounded) domain. The usual Lebesgue space is denoted by

Lp(Ω) for 1 ≤ p ≤ ∞. For a positive integer k, the Sobolev space W k,p(Ω) is defined

by W k,p(Ω) :=
{
v ∈ Lp(Ω) | ∂δv ∈ Lp(Ω), |δ| ≤ k

}
. For 1 ≤ p < ∞, the norm and

semi-norm of W k,p(Ω) are defined as

|v|k,p,Ω :=

(∑
|δ|=k

|∂δv|p0,p,Ω
)1/p

, ∥v∥k,p,Ω :=

( ∑
0≤m≤k

|v|pm,p,Ω

)1/p

,

and |v|k,∞,Ω := max
|δ|=k

{
ess sup
x∈Ω

|∂δv(x)|
}
, ∥v∥k,∞,Ω := max

0≤m≤k
{|v|m,∞,Ω}.

§ 2.2. Preliminaries from matrix analysis

We introduce some facts from the theory of matrix analysis. For their proofs, refer

to textbooks on matrix analysis such as [12] and [26].

Let n ≥ 2 be an integer and A be an n × n regular matrix. Note that A⊤A is

symmetric positive-definite and has n positive eigenvalues 0 < µ1 ≤ · · · ≤ µn. The

square roots of µi are called the singular values of A. Let µm := µ1 and µM := µn be

the minimum and maximum eigenvalues. Then,

µm|x|2 ≤ |Ax|2 ≤ µM |x|2, µ−1
M |x|2 ≤ |A−1x|2 ≤ µ−1

m |x|2, ∀x ∈ Rn.

For A, the matrix norm ∥A∥ with respect to the Euclidean norm is defined by

∥A∥ := sup
x∈Rn

|Ax|
|x|

.

From these definitions, we realize that ∥A∥ = µ
1/2
M and ∥A−1∥ = µ

−1/2
m .

For the Kronecker product of matrices, we have the following lemma whose proof

is straightforward (see the textbooks mentioned above).

Lemma 11. Let A, B, C, and D be n × n matrices. Then, the following
equations hold:

(A⊗B)(C ⊗D) = (AC ⊗BD), (A⊗B)⊤ = A⊤ ⊗B⊤.

Furthermore, if A and B have eigenvalues λi and µj, i, j = 1, · · · , n, respectively,
then λiµj are eigenvalues of A⊗B.
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Error analysis without the shape-regularity assumption

Exercise: Prove Lemma 11.

From Lemma 11, we realize that the minimum and maximum eigenvalues of (A⊤A)⊗
(A⊤A) = (A⊗A)⊤(A⊗A) are 0 < µ2

m ≤ µ2
M . Hence, for any w ∈ Rn2

,

µ2
m|w|2 ≤ |(A⊗A)w|2 ≤ µ2

M |w|2, µ−2
M |w|2 ≤ |(A−1 ⊗A−1)w|2 ≤ µ−2

m |w|2.

The above facts can be extended straightforwardly to the case of the higher-order

Kronecker product A ⊗ ... ⊗ A. For A ⊗ ... ⊗ A, A−1 ⊗ ... ⊗ A−1 (the kth Kronecker

products), and we have, for w ∈ Rnk

,

µk
m|w|2 ≤ |(A⊗ ...⊗A)w|2 ≤ µk

M |w|2,
µ−k
M |w|2 ≤ |(A−1 ⊗ ...⊗A−1)w|2 ≤ µ−k

m |w|2.

These inequalities imply that

∥A⊗ ...⊗A∥ = ∥A∥k, ∥A−1 ⊗ ...⊗A−1∥ = ∥A−1∥k.

§ 2.3. Useful inequalities

For N positive real numbers U1, ..., UN , the following inequalities hold:

N∑
k=1

Up
k ≤ Nτ(p)

(
N∑

k=1

U2
k

)p/2

, τ(p) :=

{
1− p/2, 1 ≤ p ≤ 2

0, 2 ≤ p < ∞ ,(9)

(
N∑

k=1

U2
k

)p/2

≤ Nγ(p)
N∑

k=1

Up
k , γ(p) :=

{
0, 1 ≤ p ≤ 2

p/2− 1, 2 ≤ p < ∞ .(10)

Exercise: Prove the inequalities (9) and (10).

§ 2.4. The affine transformation defined by a regular matrix

Let A be an n × n matrix with detA > 0. We consider the affine transformation

φ(x) defined by y = φ(x) := Ax + b for x = (x1, · · · , xn)
⊤, y = (y1, · · · , yn)⊤ with

b ∈ Rn. Suppose that a reference region Ω̂ ⊂ Rn is transformed to a domain Ω by φ;

Ω := φ(Ω̂). Then, a function v(y) defined on Ω is pulled-back to the function v̂(x) on

Ω̂ as v̂(x) := v(φ(x)) = v(y). Then, we have ∇xv̂ = (∇yv)A, ∇yv = (∇xv̂)A
−1, and

|∇yv|2 = |(∇xv̂)A
−1|2 = (∇xv̂)A

−1A−⊤(∇xv̂)
⊤.

The Kronecker product ∇⊗∇ of the gradient ∇ is defined by

∇⊗∇ :=

(
∂

∂x1
∇, ...,

∂

∂xn
∇
)

=

(
∂2

∂x2
1

,
∂2

∂x1∂x2
, ...,

∂2

∂xn−1∂xn
,
∂2

∂x2
n

)
.

We regard ∇⊗∇ to be a row vector. From this definition, it follows that∑
|δ|=2

(∂δv)2 =
n∑

i,j=1

(
∂2v

∂xi∂xj

)2

= |(∇⊗∇)v|2
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and (∇x ⊗∇x)v̂ = ((∇y ⊗∇y)v) (A ⊗ A), (∇y ⊗∇y)v = ((∇x ⊗∇x)v̂) (A
−1 ⊗ A−1).

Thus, we have ∥A∥−2|∇xv̂|2 ≤ |∇yv|2 ≤ ∥A−1∥2|∇xv̂|2 and∑
|δ|=2

(∂yv)
2 = |(∇y ⊗∇y)v|2

= ((∇x ⊗∇x)v̂) (A
−1 ⊗A−1)(A−1 ⊗A−1)⊤ ((∇x ⊗∇x)v̂)

⊤

= ((∇x ⊗∇x)v̂) (A
−1A−⊤ ⊗A−1A−⊤) ((∇x ⊗∇x)v̂)

⊤
,

∥A∥−2
∑
|δ|=2

(∂δ
xv̂)

2 ≤
∑
|δ|=2

(∂δ
yv)

2 ≤ ∥A−1∥2
∑
|δ|=2

(∂δ
xv̂)

2.

The above inequalities can be easily extended to higher-order derivatives, and we obtain

the following inequalities: for k ≥ 1,

∥A∥−2k
∑
|δ|=k

(∂δ
xv̂)

2 ≤
∑
|δ|=k

(∂δ
yv)

2 ≤ ∥A−1∥2k
∑
|δ|=k

(∂δ
xv̂)

2,

|detA|1/2∥A∥−k|v̂|k,2,Ω̂ ≤ |v|k,2,Ω ≤ |detA|1/2∥A−1∥k|v̂|k,2,Ω̂.(11)

Using the inequalities (9) and (10), we can extend (11) for the case of arbitrary p,

1 ≤ p < ∞:

|v|pk,p,Ω =

∫
Ω

∑
|δ|=k

|∂δ
yv(y)|pdy ≤ nkτ(p)

∫
Ω

∑
|δ|=k

|∂δ
yv(y)|2

p/2

dy

≤ nkτ(p)∥A−1∥kp
∫
Ω

∑
|δ|=k

|∂δ
xv̂(x)|2

p/2

dy

= nkτ(p)|detA|∥A−1∥kp
∫
Ω̂

∑
|δ|=k

|∂δ
xv̂(x)|2

p/2

dx

≤ nk(τ(p)+γ(p))|detA|∥A−1∥kp
∫
Ω̂

∑
|δ|=k

|∂δ
xv̂(x)|pdx

= nk(τ(p)+γ(p))|detA|∥A−1∥kp|v̂|p
k,p,Ω̂

and

|v|pk,p,Ω =

∫
Ω

∑
|δ|=k

|∂δ
yv(y)|pdy ≥ n−kγ(p)

∫
Ω

∑
|δ|=k

|∂δ
yv(y)|2

p/2

dy

≥ n−kγ(p)|detA|∥A∥−kp

∫
Ω

∑
|δ|=k

|∂δ
xv̂(x)|2

p/2

dy
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= n−kγ(p)|detA|∥A∥−kp

∫
Ω̂

∑
|δ|=k

|∂δ
xv̂(x)|2

p/2

dx

≥ n−k(τ(p)+γ(p))|detA|∥A∥−kp

∫
Ω̂

∑
|δ|=k

|∂δ
xv̂(x)|pdx

= n−k(τ(p)+γ(p))|detA|∥A∥−kp|v̂|p
k,p,Ω̂

,

where we use the fact that |v|k,2,Ω contains nk terms. Therefore, we obtain the following

lemma:

Lemma 12. In the above setting of the linear transformation, we have

n−kµ(p)|detA|1/p∥A∥−k|v̂|k,p,Ω̂ ≤ |v|k,p,Ω ≤ nkµ(p)|detA|1/p∥A−1∥k|v̂|k,p,Ω̂.(12)

where

µ(p) :=
τ(p) + γ(p)

p
=

{
1/p− 1/2, 1 ≤ p ≤ 2

1/2− 1/p, 2 ≤ p ≤ ∞ .

Proof: We only need to prove the case of p = ∞, and it is done just by letting p → ∞
in (12). □

Let us apply (12) to the case A ∈ O(n), where O(n) is the set of orthogonal

matrices. That is, A⊤A = AA⊤ = In. In this case, |detA| = ∥A∥ = ∥A−1∥ = 1. Thus,

we have

n−kµ(p)|v̂|k,p,Ω̂ ≤ |v|k,2,Ω ≤ nkµ(p)|v̂|k,p,Ω̂.(13)

Those inequalities mean that, if p = 2, the Sobolev norms |v|k,2,Ω are not affected by

rotations. If p ̸= 2, however, they are affected by rotations up to the constants n−kµ(p)

and nkµ(p).

§ 2.5. The Sobolev imbedding theorem

If 1 < p < ∞, Sobolev’s imbedding theorem and Morrey’s inequality imply that

W 2,p(K) ⊂ C1,1−2/p(K), p > 2,

H2(K) ⊂ W 1,q(K) ⊂ C0,1−2/q(K), ∀q > 2,

W 2,p(K) ⊂ W 1,2p/(2−p)(K) ⊂ C0,2(p−1)/p(K), 1 < p < 2.

For proofs of the Sobolev imbedding theorems, see [1] and [7]. For the case p = 1,

we still have the continuous imbedding W 2,1(K) ⊂ C0(K). For proof of the critical

imbedding, see [1, Theorem 4.12] and [6, Lemma 4.3.4].
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§ 2.6. Gagliardo–Nirenberg’s inequality

Theorem 13 (Gagliardo–Nirenberg’s inequality). Let 1 ≤ p ≤ ∞. Let k, m be
integers such that k ≥ 2 Then, for α := m/k, 0 < α < 1, the following inequality
holds:

|v|m,p,Rn ≤ C|v|1−α
0,p,Rn |v|αk,p,Rn , ∀v ∈ W k,p(Rn),

where the constant C depends only on k, m, p, and n.

For the proof and the general cases of Galliardo–Nirenberg’s inequality, see [7] and

the references therein.

§ 2.7. A standard error analysis of Lagrange interpolation

In this subsection, we explain a standard error analysis of Lagrange interpolation.

First, we prepare a theorem from Ciarlet[8]. Let Ω ⊂ Rn be a bounded domain with

the Lipschitz boundary ∂Ω. Let k be a positive integer and p be a real with 1 ≤ p ≤ ∞.

We consider the quotient space W k+1,p(Ω)/Pk(Ω). As usual, we introduce the following

norm to the space:

∥v̇∥k+1,p,Ω := inf
q∈Pk(Ω)

∥v + q∥k+1,p,Ω, ∀v̇ ∈ W k+1,p(Ω)/Pk(Ω),

v̇ :=
{
w ∈ W k+1,p(Ω) | w − v ∈ Pk(Ω)

}
.

We also define the seminorm of the space by |v̇|k+1,p,Ω := |v|k+1,p,Ω. Take an arbitrary

q ∈ Pk(Ω). If 1 ≤ p < ∞, we have

∥v + q∥pk+1,p,Ω = |v|pk+1,p,Ω + ∥v + q∥pk,p,Ω ≥ |v|pk+1,p,Ω,

and if p = ∞, we have

∥v + q∥k+1,∞,Ω = max {|v|k+1,∞,Ω, ∥v + q∥k,∞,Ω} ≥ |v|k+1,∞,Ω.

Thus the following inequality follows:

|v̇|k+1,p,Ω ≤ ∥v̇∥k+1,p,Ω, ∀v̇ ∈ W k+1,p(Ω)/Pk(Ω).

The next theorem claims the seminorm is actually a norm of W k+1,p(Ω)/Pk(Ω).

Theorem 14 (Ciarlet[8], Theorem 3.1.1). There exists a positive constant
C(Ω) depending only on k, p ∈ [1,∞], and Ω, such that the following estima-
tions hold:

∥v̇∥k+1,p,Ω ≤ C(Ω)|v̇|k+1,p,Ω, ∀v̇ ∈ W k+1,p(Ω)/Pk(Ω),

inf
q∈Pk(Ω)

∥v + q∥k+1,p,Ω ≤ C(Ω)|v|k+1,p,Ω, ∀v ∈ W k+1,p(Ω).(14)

Proof: Let N be the dimension of Pk(Ω) as a vector space, and {qi}Ni=1 be its basis and

{fi}Ni=1 be the dual basis of {qi}. That is, fi ∈ L(Pk(Ω),R) and they satisfy fi(qj) = δij ,
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i, j = 1, · · · , N (δij are Kronecker’s deltas). By Hahn-Banach’s theorem, fi is extended

to fi ∈ L(W k+1,p(Ω),R). For q ∈ Pk(Ω), we have

q = 0 ⇐⇒ fi(q) = 0, 1 ≤ i ≤ N.

Now, we claim that there exists a constant C(Ω) such that

∥v∥k+1,p,Ω ≤ C(Ω)

(
|v|k+1,p,Ω +

N∑
i=1

|fi(v)|

)
, ∀v ∈ W k+1,p(Ω).(15)

Suppose that (15) holds. For given v ∈ W k+1,p(Ω), let q ∈ Pk(Ω) be defined with the

extended fi ∈ L(W k+1,p(Ω),R) by

q =
N∑
i=1

λiqi, λi := −fi(v), i = 1, · · · , N.

Then, we have fi(v + q) = 0, i = 1, · · · , N . Therefore, The inequality (14) follows from

(15).

We now show the inequality (15) by contradiction. Assume that (15) does not hold.

Then, there exists a sequence {vl}∞l=1 ⊂ W k+1,p(Ω) such that

∥vl∥k+1,p,Ω = 1, ∀l, lim
l→∞

(
|vl|k+1,p,Ω +

N∑
i=1

|fi(vl)|

)
= 0.

By the compactness of the inclusion W k+1,p(Ω) ⊂ W k,p(Ω), there exists a subsequence

{vlm} and v ∈ W k,p(Ω) such that

lim
lm→∞

∥vlm − v∥k,p,Ω = 0, lim
lm→∞

|vlm |k+1,p,Ω = 0.

Here, {vlm} is a Cauchy sequence inW k,p(Ω). We show that it is also a Cauchy sequence

in W k+1,p(Ω) as well. If, for example, 1 ≤ p < ∞, we have

lim
lm,ln→∞

∥vlm − vln∥k+1,p,Ω = lim
lm,ln→∞

(
∥vlm − vln∥

p
k,p,Ω + |vlm − vln |

p
k+1,p,Ω

)1/p
≤ lim

lm,ln→∞

(
∥vlm − vln∥

p
k,p,Ω + 2p−1(|vlm |pk+1,p,Ω + |vln |

p
k+1,p,Ω)

)1/p
= 0.

The case for p = ∞ is similarly shown. Hence, v belong s to W k+1,p(Ω), and {vlm}
satisfies

lim
lm→∞

∥vlm − v∥k+1,p,Ω = 0.

This v ∈ W k+1,p(Ω) satisfies

|∂βv|0,p,Ω = lim
lk→0

|∂βvlk |0,p,Ω = 0, ∀β, |β| = k + 1,

- 21 -



Kenta Kobayashi · Takuya Tsuchiya

and thus v ∈ Pk(Ω). Therefore, because

N∑
i=1

|fi(v)| = lim
lm→∞

N∑
i=1

|fi(vlm)| = 0,

we conclude v = 0. However, this contradicts to ∥v∥k+1,p,Ω = lim
lm→∞

∥vlm∥k+1,p,Ω = 1.

□

We are now ready to prove the first inequality in Theorem 2. Recall that K̂ is the

reference triangle and K is mapped as K = φ(K̂) with φ(x) = Ax+ b.

Theorem 15. Suppose that ∥A−1∥ ≥ 1. Then, there exists a constant

C = C(K̂, p, k,m) independent of K such that

∥v − Ik
Kv∥m,p,K ≤ C∥A∥k+1∥A−1∥m|v|k+1,p,K , ∀v ∈ W k+1,p(K).(16)

Proof: Note that, for arbitrary v̂ ∈ W k+1,p(K̂) and p̂ ∈ Pk(K̂)), we have

v̂ − Ik
K̂
v̂ = (I − Ik

K̂
v̂)(v̂ + p̂),

where I : W k+1,p(K̂) → Wm,p(K̂) is the identity mapping, which is obviously continu-

ous. Therefore, it follows from (14) that∥∥∥v̂ − Ik
K̂
v̂
∥∥∥
m,p,K̂

≤
∥∥∥I − Ik

K̂

∥∥∥
L(Wk+1,p(K̂),Wm,p(K̂))

inf
p̂∈Pk(K̂)

∥v̂ + p̂∥k+1,p,K̂

≤ C1|v̂|k+1,p,K̂ ,

where the constant C1 depends on K̂, m, k, p, (and Ik
K̂
).

Note that the mapping between Wn,p(K) and Wn,p(K̂) (n = m or n = k + 1)

defined by the pull-back v̂ = v ◦ φ is an isomorphism. By (12), we have

∥∥v − Ik
Kv
∥∥
m,p,K

=

(
m∑
l=0

∣∣v − Ik
Kv
∣∣p
l,p,K

)1/p

≤

(
m∑
l=0

nlµ(p)|detA|∥A−1∥lp
∣∣∣v̂ − Ik

K̂
v̂
∣∣∣p
l,p,K̂

)1/p

,

≤ nmµ(p)|detA|1/p∥A−1∥m
∥∥∥v̂ − Ik

K̂
v̂
∥∥∥
m,p,K̂

,

|v̂|k+1,p,K ≤ n(k+1)µ(p)|detA|−1/p∥A∥k+1 |v|k+1,p,K̂ ,

because of the assumption ∥A−1∥ ≥ 1. Combining these inequalities, the proof is

completed with C := n(k+1+m)µ(p)C1. □
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Combining these propositions with Lemma 3, we see that, for arbitrary v ∈ W k+1,p(K),

∥v − Ik
Kv∥m,p,K ≤ C∥A∥k+1∥A−1∥m|v|k+1,p,K ≤ C

(
hK

ρK̂

)k+1(hK̂

ρK

)m

|v|k+1,p,K

≤ C
hm
K̂

ρk+1

K̂

hk+1
K

ρmK
|v|k+1,p,K .

If there exists a constant σ such that hK/ρK ≤ σ, then ρ−1
K ≤ σh−1

K , and we obtain the

following standard error estimation.

Theorem 16. Let K ⊂ R2 be a triangle with hK ≤ 1. Suppose that
hK/ρK ≤ σ, where σ is a positive constant. Then, there exists a constant

C = C(K̂, p, k,m, σ) independent of K such that

∥v − Ik
Kv∥m,p,K ≤ Chk+1−m

K |v|k+1,p,K , ∀v ∈ W k+1,p(K).(17)

§ 3. Babuška–Aziz’s technique

In the previous section, we have proved the standard error estimation (16), (17).

To improve them, we introduce the technique given by Babuška–Aziz [4].

Let K̂ be the reference triangle with the vertices (0, 0)⊤, (1, 0)⊤, and (0, 1)⊤. For

K̂, the sets Ξi
p ⊂ W 1,p(K̂), i = 1, 2, p ∈ [1,∞] are defined by

Ξ(1,0),1
p :=

{
v ∈ W 1,p(K̂)

∣∣∣ ∫ 1

0

v(s, 0)ds = 0

}
,

Ξ(0,1),1
p :=

{
v ∈ W 1,p(K̂)

∣∣∣ ∫ 1

0

v(0, s)ds = 0

}
.

The constant Ap is then defined by

Ap := sup
v∈Ξ

(1,0),1
p

|v|0,p,K̂
|v|1,p,K̂

= sup
v∈Ξ

(0,1),1
p

|v|0,p,K̂
|v|1,p,K̂

, 1 ≤ p ≤ ∞.

The second equation in the above definition follows from the symmetry of K̂. The

constant Ap (and its reciprocal 1/Ap) is called the Babuška–Aziz constant for p ∈
[1,∞]. According to Liu–Kikuchi [22], A2 is the maximum positive solution of the

equation 1/x+ tan(1/x) = 0, and A2 ≈ 0.49291.

In the following, we show thatAp < ∞ (Babuška–Aziz [4, Lemma 2.1] and Kobayashi–

Tsuchiya [15, Lemma 1]).

Lemma 17. We have Ap < ∞, p ∈ [1,∞].
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Proof: The proof is by contradiction. Assume that Ap = ∞. Then, there exists a

sequence {uk}∞i=1 ⊂ Ξ
(1,0),1
p such that

|uk|0,p,K̂ = 1, lim
k→∞

|uk|1,p,K̂ = 0.

From the inequality (14), for an arbitrary ε > 0, there exists a sequence {qk} ⊂ P0(K̂)

such that

inf
q∈P0(K̂)

∥uk + q∥1,p,K̂ ≤ ∥uk + qk∥1,p,K̂ ≤ inf
q∈P0(K̂)

∥uk + q∥1,p,K̂ +
ε

k
≤ C|uk|1,p,K̂ +

ε

k
,

lim
k→∞

∥uk + qk∥1,p,K̂ = 0.

Since the sequence {uk} ⊂ W 1,p(K̂) is bounded, {qk} ⊂ P0(K̂) = R is also bounded.

Therefore, there exists a subsequence {qki} such that qki converges to q̄ ∈ P0(K̂). Thus,

in particular, we have

lim
ki→∞

∥uki + q̄∥1,p,K̂ = 0.

Let Γ be the edge of K̂ connecting (1, 0)⊤ and (0, 0)⊤ and γ : W 1,p(K̂) → W 1−1/p,p(Γ)

be the trace operator. The continuity of γ and the inclusion W 1−1/p,p(Γ) ⊂ L1(Γ) yield

0 = lim
ki→∞

∫
Γ

γ(uki
+ q̄)ds =

∫
Γ

q̄ds,

because uki ∈ Ξ1
p. Thus, we find that q̄ = 0 and limki→∞ ∥uki∥1,p,K̂ = 0. This

contradicts limki→∞ ∥uki
∥1,p,K̂ ≥ limki→∞ |uki

|0,p,K̂ = 1. □

We define the bijective linear transformation Fαβ : R2 → R2 by

(x∗, y∗)⊤ = (αx, βy)⊤, (x, y)⊤ ∈ R2, α, β > 0.

The map Fαβ is called the squeezing transformation.

Now, we consider the “squeezed” triangle Kαβ := Fαβ(K̂). Take an arbitrary

v ∈ W 2,p(Kαβ), and pull-back v to u := v ◦ Fαβ ∈ W 2,p(K̂). For, p, 1 ≤ p < ∞, we

have

|v|p0,p,Kαβ

|v|p1,p,Kαβ

=
|u|p

0,p,K̂
1
αp |ux|p0,p,K̂ + 1

βp |uy|p0,p,K̂
,(18)

|v|p0,p,Kαβ

|v|p2,p,Kαβ

=
|u|p

0,p,K̂
1

α2p |uxx|p0,p,K̂ + 2
αpβp |uxy|p0,p,K̂ + 1

β2p |uyy|p0,p,K̂
,(19)

|v|p1,p,Kαβ

|v|p2,p,Kαβ

=

1
αp |ux|p0,p,K̂ + 1

βp |uy|p0,p,K̂
1

α2p |uxx|p0,p,K̂ + 2
αpβp |uxy|p0,p,K̂ + 1

β2p |uyy|p0,p,K̂
.(20)

In the following we explain how these equations are derived.
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Note that, for (x, y)⊤ ∈ K̂ and (x∗, y∗)⊤ = (αx, βy)⊤ ∈ Kαβ , we have

ux = αvx∗ , uy = βvy∗ ,

and

|vx∗ |p0,p,Kαβ
=

∫
Kαβ

|vx∗ |pdx∗ =
1

αp

∫
Kαβ

|ux|pdx∗ =
β

αp−1

∫
K̂

|ux|pdx =
β

αp−1
|ux|p0,p,K̂ .

Here, dx := dxdy, dx∗ := dx∗dy∗, and used the fact det(DFαβ) = αβ, where DFαβ is

the Jacobian matrix of Fαβ . Similarly, we obtain

|vy∗ |p0,p,Kαβ
=

α

βp−1
|uy|p0,p,K̂ , |v|p0,p,Kαβ

= αβ|u|p
0,p,K̂

.

Therefore, these equations yield (18):

|v|p0,p,Kαβ

|v|p1,p,Kαβ

=
αβ|u|p

0,p,K̂

β
αp−1 |ux|p0,p,K̂ + α

βp−1 |uy|p0,p,K̂
=

|u|p
0,p,K̂

1
αp |ux|p0,p,K̂ + 1

βp |uy|p0,p,K̂
.

Similarly, the equations

|vx∗x∗ |p0,p,Kαβ
=

β

α2p−1
|uxx|p0,p,K̂ ,

|vx∗y∗ |p0,p,Kαβ
=

1

αp−1βp−1
|uxy|p0,p,K̂ ,

|vy∗y∗ |p0,p,Kαβ
=

α

β2p−1
|uyy|p0,p,K̂

are obtained and yield (19) and (20) as

|v|p0,p,Kαβ

|v|p2,p,Kαβ

=
αβ|u|p

0,p,K̂

β
α2p−1 |uxx|p0,p,K̂ + 2

αp−1βp−1 |uxy|p0,p,K̂ + α
β2p−1 |uyy|p0,p,K̂

=
|u|p

0,p,K̂
1

α2p |uxx|p0,p,K̂ + 2
αpβp |uxy|p0,p,K̂ + 1

β2p |uyy|p0,p,K̂
,

|v|p1,p,Kαβ

|v|p2,p,Kαβ

=

β
αp−1 |ux|p0,p,K̂ + α

βp−1 |uy|p0,p,K̂
β

α2p−1 |uxx|p0,p,K̂ + α
β2p−1 |uyy|p0,p,K̂ + 2

αp−1βp−1 |uxy|p0,p,K̂

=

1
αp |ux|p0,p,K̂ + 1

βp |uy|p0,p,K̂
1

α2p |uxx|p0,p,K̂ + 2
αpβp |uxy|p0,p,K̂ + 1

β2p |uyy|p0,p,K̂
.

Next, let p = ∞. Then, we have

|v|0,∞,Kαβ
= |u|0,∞,K̂ , |v|1,∞,Kαβ

= max
{
|ux|1,∞,K̂/α, |uy|1,∞,K̂/β

}
,

|v|2,∞,Kαβ
= max

{
|uxx|2,∞,K̂/α2, |uxy|2,∞,K̂/(αβ), |uyy|2,∞,K̂/β2

}
,
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and obtain

|v|0,∞,Kαβ

|v|1,∞,Kαβ

=
|u|0,∞,K̂

max
{

1
α |ux|0,∞,K̂ , 1

β |uy|0,∞,K̂

} ,
|v|0,∞,Kαβ

|v|2,∞,Kαβ

=
|u|0,∞,K̂

max
{

1
α2 |uxx|0,∞,K̂ , 1

αβ |uxy|0,∞,K̂ , 1
β2 |uyy|0,∞,K̂

} ,
|v|1,∞,Kαβ

|v|2,∞,Kαβ

=
max

{
1
α |ux|0,∞,K̂ , 1

β |uy|0,∞,K̂

}
max

{
1
α2 |uxx|0,∞,K̂ , 1

αβ |uxy|0,∞,K̂ , 1
β2 |uyy|0,∞,K̂

} .(21)

For a triangle K and 1 ≤ p ≤ ∞, we define T 1
p (K) ⊂ W 2,p(K) by

T 1
p (K) :=

{
v ∈ W 2,p(K)

∣∣ v(xi) = 0, i = 1, 2, 3
}
.

Note that if v ∈ T 1
p (Kαβ), then u := v ◦ Fαβ ∈ T 1

p (K̂).

The following lemma is from Babuška–Aziz [4, Lemma 2.2] and Kobayashi–Tsuchiya

[15, Lemma 3].

Lemma 18. The constant B1,1
p (Kαβ) is defined by

B1,1
p (Kαβ) := sup

v∈T 1
p (Kαβ)

|v|1,p,Kαβ

|v|2,p,Kαβ

, 1 ≤ p ≤ ∞.

Then, we have B1,1
p (Kαβ) ≤ max{α, β}Ap.

Proof: Suppose first that 1 ≤ p < ∞. Take an arbitrary v ∈ T 1
p (Kαβ) and define

u ∈ T 1
p (K̂) by u(x, y) := v(x∗, y∗), (x∗, y∗)⊤ = (αx, βy)⊤. By (20), we find

|v|p1,p,Kαβ

|v|p2,p,Kαβ

=

1
αp |ux|p0,p,K̂ + 1

βp |uy|p0,p,K̂
1

α2p |uxx|p0,p,K̂ + 1
αpβp |uxy|p0,p,K̂ + 1

αpβp |uxy|p0,p,K̂ + 1
β2p |uyy|p0,p,K̂

≤
max{αp, βp}

(
1
αp |ux|p0,p,K̂ + 1

βp |uy|p0,p,K̂
)

1
αp

(
|uxx|p0,p,K̂ + |uxy|p0,p,K̂

)
+ 1

βp

(
|uxy|p0,p,K̂ + |uyy|p0,p,K̂

)
= max{αp, βp}

1
αp |ux|p0,p,K̂ + 1

βp |uy|p0,p,K̂
1
αp |ux|p1,p,K̂ + 1

βp |uy|p1,p,K̂
.

Here, we used the fact that, for X, Y > 0,

1
1
αpX + 1

βpY
≤ max{αp, βp}

X + Y
.
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Note that u(0, 0) = u(1, 0) = 0 by the definition of T 1
p (K̂) and ux ∈ Ξ

(1,0),1
p . Thus, by

Lemma 17, we realize that

|ux|p0,p,K̂ ≤ Ap
p|ux|1,p,K̂ .

By the same reason, we realize that uy ∈ Ξ
(0,1),1
p and

|uy|p0,p,K ≤ Ap
p|uy|p1,p,K .

Inserting those inequalities into the above estimation, we obtain

|v|p1,p,Kαβ

|v|p2,p,Kαβ

≤ max{αp, βp}
Ap

p

αp |ux|p1,p,K̂ +
Ap

p

βp |uy|p1,p,K̂
1
αp |ux|p1,p,K̂ + 1

βp |uy|p1,p,K̂
= (max{α, β})p Ap

p,

and conclude

B1,1
p (Kαβ) = sup

v∈T 1
p (Kαβ)

|v|1,p,Kαβ

|v|2,p,Kαβ

≤ max{α, β}Ap.

Next, let p = ∞. By (21), we immediately obtain

|v|1,∞,Kαβ

|v|2,∞,Kαβ

=
max

{
1
α |ux|0,∞,K̂ , 1

β |uy|0,∞,K̂

}
max

{
max

{ |uxx|0,∞,K̂

α2 ,
|uxy|0,∞,K̂

αβ

}
,max

{ |uxy|0,∞,K̂

αβ ,
|uyy|0,∞,K̂

β2 ,
}}

≤
max{α, β}max

{
1
α |ux|0,∞,K̂ , 1

β |uy|0,∞,K̂

}
max

{
1
α max

{
|uxx|0,∞,K̂ , |uxy|0,∞,K̂

}
, 1
β max

{
|uxy|0,∞,K̂ , |uyy|0,∞,K̂ ,

}}
= max{α, β}

max
{

1
α |ux|0,∞,K̂ , 1

β |uy|0,∞,K̂

}
max

{
1
α |ux|1,∞,K̂ , 1

β |uy|1,∞,K̂

}
≤ max{α, β}

A∞ max
{

1
α |ux|1,∞,K̂ , 1

β |uy|1,∞,K̂

}
max

{
1
α |ux|1,∞,K̂ , 1

β |uy|1,∞,K̂

} = max{α, β}A∞. □

The following lemma is from Babuška–Aziz [4, Lemma 2.3,2.4] and Kobayashi–

Tsuchiya [15, Lemma 4,5].

Lemma 19. The constants B0,1
p (Kαβ), Ãp are defined by

B0,1
p (Kαβ) := sup

v∈T 1
p (Kαβ)

|v|0,p,Kαβ

|v|2,p,Kαβ

, Ãp := B0,1
p (K̂) := sup

v∈T 1
p (K̂)

|v|0,p,K̂
|v|2,p,K̂

, 1 ≤ p ≤ ∞.

Then, we have the estimation B0,1
p (Kαβ) ≤ max{α2, β2}Ãp < +∞.
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Proof: The proof of Ãp < +∞ is very similar to that of Lemma 17 and is by

contradiction. Supposet that Ãp = ∞. Then, there exists {um}∞m=1 ⊂ T 1
p (K̂) such that

|um|0,p,K̂ = 1, lim
m→∞

|um|2,p,K̂ = 0.

Then, by (14), there exists {qm} ⊂ P1(K̂) such that

lim
m→∞

∥um + qm∥2,p,K̂ = 0.

Since |um|0,p,K̂ and |um|2,p,K̂ are bounded, |um|1,p,K̂ and ∥um∥2,p,K̂ are bounded as

well by Gagliardo–Nirenberg’s inequality (Theorem 13). Hence, {qm} ⊂ P1(K̂) is also

bounded. Thus, there exists a subsequence {qmi} which converges to q̄ ∈ P1(K̂). In

particular, we have

lim
mi→∞

∥umi + q̄∥2,p,K̂ = 0.

Since {um} ⊂ T 1
p (K̂), we conclude that q̄ ∈ T 1

p (K̂) ∩ P1(K̂) and q̄ = 0. Therefore, we

reach limmi→∞ ∥umi
∥2,p,K̂ = 0 which contradicts to lim

mi→∞
∥umi

∥2,p,K̂ ≥ lim
mi→∞

|umi
|0,p,K̂ =

1.

We now consider the estimation for the case 1 ≤ p < ∞. From (19) we have

|v|p0,p,Kαβ

|v|p2,p,Kαβ

=
|u|p

0,p,K̂
1

α2p |uxx|p0,p,K̂ + 2
αpβp |uxy|p0,p,K̂ + 1

β2p |uyy|p0,p,K̂

≤
max{α2p, β2p}|u|p

0,p,K̂

|uxx|p0,p,K̂ + 2|uxy|p0,p,K̂ + |uyy|p0,p,K̂
≤
(
max{α2, β2}

)p
Ãp

p,

and Lemma is shown for this case. The proof for the case p = ∞ is very similar. □

Exercise: In Lemma 19, prove the case p = ∞.

We may apply Lemmas 18 and 19 to v − I1
Kαβ

v ∈ T 1
p (Kαβ) for v ∈ W 2,p(Kαβ),

and obtain the following corollary.

Corollary 20. For arbitrary v ∈ W 2,p(Kαβ) (1 ≤ p ≤ ∞), the following esti-
mations hold:

|v − I1
Kαβ

v|1,p,Kαβ
≤ max{α, β}Ap|v|2,p,Kαβ

,

|v − I1
Kαβ

v|0,p,Kαβ
≤ (max{α, β})2 Ãp|v|2,p,Kαβ

.

§ 4. Extending Babuška-Aziz’s technique to the higher order Lagrange in-

terpolation

In this section, we prove the following theorem using Babuška-Aziz’s technique.

Let k be a positive integer and p be such that 1 ≤ p ≤ ∞. The set T k
p (K) is defined by

T k
p (K) :=

{
v ∈ W k+1,p(K)

∣∣ v(x) = 0,∀x ∈ Σk(K)
}
,

- 28 -



Error analysis without the shape-regularity assumption

where Σk(K) is defined by (1). Note that if v ∈ T k
p (Kαβ), then u = v ◦ Fαβ ∈ T k

p (K̂).

Theorem 21. Take arbitrary α > 0 and β > 0. Then, there exists a constant
Ck,m,p such that, for m = 0, 1, · · · , k,

Bm,k
p (Kαβ) := sup

v∈T k
p (Kαβ)

|v|m,p,Kαβ

|v|k+1,p,Kαβ

≤ (max{α, β})k+1−m
Ck,m,p.

Here, Ck,m,p depends only on k, m, and p, and is independent of α and β.

=⇒

Figure 4. Squeezing the reference triangle K̂ perpendicularly does not deteriorate the
approximation property of Lagrange interpolation.

Applying Theorem 21 to v − Ik
Kαβ

v ∈ T k
p (Kαβ) for v ∈ W k+1,p(Kαβ), and obtain

the following corollary.

Corollary 22. For arbitrary v ∈ W k+1,p(Kαβ) (1 ≤ p ≤ ∞), the following
estimations hold:

|v − Ik
Kαβ

v|m,p,Kαβ
≤ Ck,m,p (max{α, β})k+1−m |v|k+1,p,Kαβ

.

The manner of the proof of Theorem 21 is exactly similar as in the previous section.

The ratio |v|pm,p,Kαβ
/|v|pk+1,p,Kαβ

is written using the seminorms of u on K̂, and is

bounded by a constant that does not depend on v.

First, let 1 ≤ p < ∞. For a multi-index γ = (a, b) ∈ N2
0 and a real t ̸= 0, set

(α, β)γt := αatβbt. Then, we have

|v|pm,p,Kαβ

|v|pk+1,p,Kαβ

=

∑
|γ|=m

m!
γ! (α, β)

−γp |∂γu|p
0,p,K̂∑

|δ|=k+1
(k+1)!

δ! (α, β)−δp |∂δu|p
0,p,K̂

=

∑
|γ|=m

m!
γ! (α, β)

−γp |∂γu|p
0,p,K̂∑

|γ|=m
m!
γ! (α, β)

−γp
(∑

|η|=k+1−m
(k+1−m)!
η!(α,β)ηp |∂η(∂γu)|p

0,p,K̂

)
≤

(max{α, β})(k+1−m)p∑
|γ|=m

m!
γ! (α, β)

−γp |∂γu|p
0,p,K̂∑

|γ|=m
m!
γ! (α, β)

−γp
(∑

|η|=k+1−m
(k+1−m)!

η! |∂η(∂γu)|p
0,p,K̂

)
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= (max{α, β})(k+1−m)p

∑
|γ|=m

m!
γ! (α, β)

−γp |∂γu|p
0,p,K̂∑

|γ|=m
m!
γ! (α, β)

−γp |∂γu|p
k+1−m,p,K̂

.(22)

Here, we used the fact that, for a multi-index η, (α, β)ηp ≤ (max{α, β})|η|p and, for a

multi-index δ with |δ| = k + 1,

|δ|!
δ!

=
∑

γ+η=δ
|γ|=m,|η|=k+1−m

|γ|!
γ!

|η|!
η!

.

For example, if k = 2, then we see

|v|p1,p,Kα

|v|p3,p,Kα

=

1
αp |ux|p0 + 1

βp |uy|p0
1

α3p |uxxx|p0 + 3
α2pβp |uxxy|p0 + 3

αpβ2p |uxyy|p0 + 1
β3p |uyyy|p0

=

1
αp |ux|pp + 1

βp |uy|pp
1
αp

(
|uxxx|pp
α2p + 2

|uxxy|pp
αpβp +

|uxyy|pp
β2p

)
+ 1

βp

(
|uxxy|pp
α2p + 2

|uxyy|pp
αpβp +

|uyyy|pp
β2p

)
≤

max{α2p, β2p}
(

1
αp |ux|p0 + 1

βp |uy|p0
)

1
αp (|uxxx|p0 + 2|uxxy|p0 + |uxyy|p0) + 1

βp (|uxxy|p0 + 2|uxyy|p0 + uyyy|p0)

= max{α2p, β2p}
1
αp |ux|p0,p,K̂ + 1

βp |uy|p0,p,K̂
1
αp |ux|p2,p,K̂ + 1

βp |uy|p2,p,K̂
,

and

|v|p2,p,Kαβ

|v|p3,p,Kαβ

=

1
α2p |uxx|p0 + 2

αpβp |uxy|p0 + 1
β2p |uyy|p0

1
α3p |uxxx|p0 + 3

α2pβp |uxxy|p0 + 3
αpβ2p |uxyy|p0 + 1

β3p |uyyy|p0

=

1
α2p |uxx|pp + 2

αpβp |uxy|pp + 1
β2p |uyy|pp

1
α2p

(
|uxxx|pp

αp +
|uxxy|pp

βp

)
+ 2

αpβp

(
|uxxy|pp

αp +
|uxyy|pp

βp

)
+ 1

β2p

(
|uxyy|pp

αp +
|uyyy|pp

βp

)
≤

max{αp, βp}
(

1
α2p |uxx|p0 + 2

αpβp |uxy|p0 + 1
β2p |uyy|p0

)
1

α2p (|uxxx|p0 + |uxxy|p0) + 2
αpβp (|uxxy|p0 + |uxyy|p0) + 1

β2p (|uxyy|p0 + |uyyy|p0)

= max{αp, βp}
1

α2p |uxx|p0,p,K̂ + 2
αpβp |uxy|p0,p,K̂ + 1

β2p |uyy|p0,p,K̂
1

α2p |uxx|p1,p,K̂ + 2
αpβp |uxy|p1,p,K̂ + 1

β2p |uyy|p1,p,K̂
.

In the above, we use the notation | · |0 instead of | · |0,p,K̂ for simplicity.

Exercise: Confirm the details of the above inequalities, in particular, (22).

Now suppose that, for T k
p (K̂) and a multi-index γ, the set Ξγ,k

p is defined so that

(23) u ∈ T k
p (K̂) =⇒ ∂γu ∈ Ξγ,k

p
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and

(24) Aγ,k
p := sup

v∈Ξγ,k
p

|v|0,p,K̂
|v|k+1−|γ|,p,K̂

< ∞

hold. Then, from (22), we would conclude that

|v|pm,p,Kαβ

|v|pk+1,p,Kαβ

≤ (max{α, β})(k+1−m)p

∑
|γ|=m

m!
γ! (α, β)

−γp |∂γu|p
0,p,K̂∑

|γ|=m
m!
γ! (α, β)

−γp |∂γu|p
k+1−m,p,K̂

≤ (max{α, β})(k+1−m)p

∑
|γ|=m

(
Aγ,k

p

)p m!
γ! (α, β)

−γp |∂γu|p
k+1−m,p,K̂∑

|γ|=m
m!
γ! (α, β)

−γp |∂γu|p
k+1−m,p,K̂

≤ (max{α, β})(k+1−m)p
Cp

k,m,p, Ck,m,p := max
|γ|=m

Aγ,k
p .(25)

Our task now is to define Ξγ,k
p that satisfies (23) and (24). We will explain the details

in the following sections.

§ 5. Difference quotients

In this section, we define the difference quotients for two-variable functions. Our

treatment is based on the theory of difference quotients of one-variable functions given

in standard textbooks such as [3] and [25]. All statements in this section can be readily

proved.

§ 5.1. Difference quotients of one-variable functions

For a function f(x) and nodal points x0, x1, · · · , xn ∈ R, the difference quotients

of f are defined recursively by

f [x0, x1] :=
f(x0)− f(x1)

x0 − x1
, f [x0, x1, x2] :=

f [x0, x1]− f [x1, x2]

x0 − x2
,

f [x0, x1, · · · , xm] :=
f [x0, · · · , xm−1]− f [x1, · · · , xm]

x0 − xm
.

A simplest case is xi := x0 + hi, i = 1, · · · ,m, with h > 0. In this case, the

difference quotients are

f [x0, x1] :=
f(x1)− f(x0)

h
, f [x0, x1, x2] :=

f(x0)− 2f(x1) + f(x2)

h2
,

- 31 -



Kenta Kobayashi · Takuya Tsuchiya

and so on. The difference quotients are expressed by integration:

f [x0, x1] =
1

x1 − x0

∫ x1

x0

f ′(t)dt =

∫ 1

0

f ′(x0 + t1(x1 − x0))dt1,

f [x0, x1, x2] =
f [x2, x1]− f [x1, x0]

x2 − x0
=

f [x2, x0]− f [x0, x1]

x2 − x1

=
1

x2 − x1

∫ 1

0

(f ′(x0 + t1(x2 − x0))− f ′(x0 + t1(x1 − x0))) dt1

=

∫ 1

0

∫ t1

0

f ′′ (x0 + t1(x1 − x0) + t2(x2 − x1)) dt2dt1.

For n ≥ 1, the following formula holds:

f [x0, x1, · · · , xn] =

∫ 1

0

∫ t1

0

· · ·
∫ tn−1

0

f (n)

(
x0 +

n∑
i=1

ti(xi − xi−1)

)
dtn · · · dt2dt1.(26)

Exercise: Prove (26) by induction.

§ 5.2. Difference quotients of two variable functions

We now extend the difference quotient to functions with two variables. For a

positive integer k, the set Σ̂k ⊂ K̂ is defined by

Σ̂k := Σk(K̂) :=

{
xγ :=

γ

k
∈ K̂

∣∣∣∣ γ ∈ N2
0, 0 ≤ |γ| ≤ k

}
,

where γ/k = (a1/k, a2/k) is understood as the coordinate of a point in Σ̂k.

For xγ ∈ Σ̂k and a multi-index δ ∈ N2
0 with |γ| ≤ k − |δ|, we define the correspon-

dence ∆δ between nodes by

∆δxγ := xγ+δ ∈ Σ̂k.

For example, ∆(1,1)x(0,0) = x(1,1) and ∆(2,1)x(0,1) = x(2,2). Using ∆δ, we define the

difference quotients on Σ̂k for f ∈ C0(K̂) by

f |δ|[xγ ,∆
δxγ ] := k|δ|

∑
η≤δ

(−1)|δ|−|η|

η!(δ − η)!
f(∆ηxγ).

For simplicity, we denote f |δ|[x(0,0),∆
δx(0,0)] by f |δ|[∆δx(0,0)]. The following are exam-

ples of f |δ|[∆δx(0,0)]:

f2[∆(2,0)x(0,0)] =
k2

2
(f(x(2,0))− 2f(x(1,0)) + f(x(0,0))),

f2[∆(1,1)x(0,0)] = k2(f(x(1,1))− f(x(1,0))− f(x(0,1)) + f(x(0,0))),

f3[∆(2,1)x(0,0)] =
k3

2
(f(x(2,1))− 2f(x(1,1)) + f(x(0,1))− f(x(2,0))

+ 2f(x(1,0))− f(x(0,0))).
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Let η ∈ N2
0 be such that |η| = 1 and η ≤ δ. The difference quotients clearly satisfy the

following recursive relations:

f |δ|[xγ ,∆
δxγ ] =

k

δ · η

(
f |δ|−1[xγ+η,∆

δ−ηxγ+η]− f |δ|−1[xγ ,∆
δ−ηxγ ]

)
.

If f ∈ Ck(K̂), the difference quotient f |δ|[xγ ,∆
δxγ ] is written as an integral of f .

Setting d = 2 and δ = (0, s), for example, we have

f1[x(l,q),∆
(0,1)x(l,q)] = k(f(x(l,q+1))− f(x(l,q))) =

∫ 1

0

∂(0,1)f

(
l

k
,
q

k
+

w1

k

)
dw1,

f1[x(l,q),∆
(0,2)x(l,q)] =

k2

2
(f(x(l,q+2))− 2f(x(l,q+1)) + f(x(l,q)))

=

∫ 1

0

∫ w1

0

∂(0,2)f

(
l

k
,
q

k
+

1

k
(w1 + w2)

)
dw2dw1

= k

∫ 1

0

[
∂(0,1)f

(
l

k
,
q

k
+

2

k
w1

)
− ∂(0,1)f

(
l

k
,
q

k
+

1

k
w1

)]
dw1,

fs[x(l,p),∆
(0,s)x(l,q)]

=

∫ 1

0

∫ w1

0

· · ·
∫ ws−1

0

∂(0,s)f

(
l

k
,
q

k
+

1

k
(w1 + · · ·+ ws)

)
dws · · · dw2dw1.

To provide a concise expression for the above integral, we introduce the s-simplex

Ss := {(t1, t2, · · · , ts) ∈ Rs | ti ≥ 0, 0 ≤ t1 + · · ·+ ts ≤ 1} ,

and the integral of g ∈ L1(Ss) on Ss is defined by∫
Ss
g(w1, · · · , wk)dWs :=

∫ 1

0

∫ w1

0

· · ·
∫ ws−1

0

g(w1, · · · , ws)dws · · · dw2dw1,

where dWs = dws · · · dw2dw1. Then, f
s[x(l,q),∆

(0,s)x(l,q)] becomes

fs[x(l,q),∆
(0,s)x(l,q)] =

∫
Ss
∂(0,s)f

(
l

k
,Ws

)
dWs, Ws :=

q

k
+

1

k
(w1 + · · ·+ ws).

For a general multi-index (t, s), we have

f t+s[x(l,q),∆
(t,s)x(l,q)] =

∫
Ss

∫
St
∂(t,s)f (Zt,Ws) dZtdWs.

Zt :=
l

k
+

1

k
(z1 + · · ·+ zt), dZt := dzt · · · dz2dz1.

Let □δ
γ be the rectangle defined by xγ and ∆δxγ as the diagonal points. If δ = (t, 0)

or (0, s), □δ
γ degenerates to a segment. For v ∈ W 1,1(K̂) and □δ

γ with γ = (l, q), we

denote the integral as ∫
□(t,s)

γ

v :=

∫
Ss

∫
St
v (Zt,Ws) dZtdWs.
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If □δ
γ degenerates to a segment, the integral is understood as an integral on the segment.

By this notation, the difference quotient f t+s[xγ ,∆
(t,s)xγ ] is written as

f (t+s)[xγ ,∆
(t,s)xγ ] =

∫
□(t,s)

γ

∂(t,s)f.

Therefore, if u ∈ T k
p (K̂), then we have

0 = ut+s[xγ ,∆
(t,s)xγ ] =

∫
□(t,s)

γ

∂(t,s)u, ∀□(t,s)
γ ⊂ K̂.(27)

Exercise: Confirm that all the equations in this section certainly hold.

§ 6. The proof of Theorem 21

By introducing the notation in the previous section, we now be able to define

Ξγ,k
p ⊂ W k+1−|γ|,p(K̂) and Aγ,k

p for p ∈ [1,∞], which satisfy (23) and (24). For multi-

index γ, define

Ξγ,k
p :=

{
v ∈ W k+1−|γ|,p(K̂)

∣∣∣ ∫
□γ

lp

v = 0, ∀□γ
lp ⊂ K̂

}
.

From the definition and (27), it is clear that (23) holds. Define

Aγ,k
p := sup

v∈Ξγ,k
p

|v|0,p,K̂
|v|k+1−|γ|,p,K̂

, 1 ≤ p ≤ ∞.

Then, the following lemma holds.

Lemma 23. We have Ξγ,k
p ∩ Pk−|γ| = {0}. That is, if q ∈ Pk−|γ| belongs to

Ξγ,k
p , then q = 0.

Proof: We notice that dimPk−|δ| = #{□δ
lp ⊂ K̂}. For example, if k = 4 and |δ| = 2,

then dimP2 = 6. This corresponds to the fact that, in K̂, there are six squares with

size 1/4 for δ = (1, 1) and there are six horizontal segments of length 1/2 for δ =

(2, 0). All their vertices (corners and end-points) belong to Σ4(K̂) (see Figure 5). Now,

suppose that v ∈ Pk−|δ| satisfies
∫
□δ

lp
q = 0 for all □δ

lp ⊂ K̂. This condition is linearly

independent and determines q = 0 uniquely. □

To understand the above proof clearly, we consider the cases k = 2 and 3. Let

k = 2 and γ = (1, 0). Then, k− |γ| = 1. Set q(x, y) = a+ bx+ cy. If the three integrals∫
□(1,0)

00

q(x, y) = a+
b

4
,

∫
□(1,0)

10

q(x, y) = a+
3b

4
,

∫
□(1,0)

01

q(x, y) = a+
b

4
+

c

2
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Figure 5. The six squares of size 1/4 for δ = (1, 1) and the (union of) six segments of

length 1/2 for δ = (2, 0) in K̂.

are equal to 0, then we have a = b = c = 0, that is, q(x, y) = 0. The case γ = (0, 1) is

similar.

Let k = 3 and γ = (1, 0). Then, k−|γ| = 2. Set q(x, y) = a+bx+cy+dx2+ey2+fxy.

If the integrals∫
□(1,0)

00

q(x, y) = a+
b

6
+

d

27
,

∫
□(1,0)

10

q(x, y) = a+
b

2
+

7

27
d,∫

□(1,0)
20

q(x, y) = a+
5

6
b+

19

27
d

are all equal to 0, we have a = b = d = 0. Moreover, if the integrals∫
□(1,0)

01

q(x, y) =
c

3
+

e

9
+

f

18
,

∫
□(1,0)

11

q(x, y) =
c

3
+

e

9
+

f

6
,∫

□(1,0)
02

q(x, y) =
2

3
c+

4

9
e+

f

9

are equal to 0 as well, we have c = e = f = 0. Hence, we conclude that q(x, y) = 0.

The case γ = (0, 1) is similar.

Lemma 24. We have Aγ,k
p < ∞, p ∈ [1,∞]. That is, (24) holds.

Proof: The proof is by contradiction. Suppose that Aγ,k
p = ∞. Then, there exists a

sequence {un}∞n=1 ⊂ Ξγ,k
p such that

|un|0,p,K̂ = 1, lim
n→∞

|un|k+1−|γ|,p,K̂ = 0.

By the inequality (14), for an arbitrary ε > 0, there exists a sequence {qn} ⊂ Pk−|γ|
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such that

inf
q∈Pk−|γ|

∥un + q∥k+1−|γ|,p,K̂ ≤ ∥un + qn∥k+1−|γ|,p,K̂

≤ inf
q∈Pk−|γ|

∥un + q∥k+1−|γ|,p,K̂ +
ε

n

≤ C|un|k+1−|γ|,p,K̂ +
ε

n
, lim

n→∞
∥un + qn∥k+1−|γ|,p,K̂ = 0.

Since |un|k+1−|γ|,p,K̂ and |un|0,p,K̂ are bounded, |un|m,p,K̂ (1 ≤ m ≤ k−|γ|) is bounded
as well by Gagliardo–Nirenberg’s inequality (Theorem 13). That is, ∥un∥k+1−|γ|,p,K̂
and {qn} ⊂ Pk−|γ| are bounded. Thus, there exists a subsequence {qni

} such that qni

converges to q̄ ∈ Pk−|γ|. In particular, we see

lim
ni→∞

∥uni + q̄∥k+1−|γ|,p,K̂ = 0.

Therefore, for any □γ
lp, we notice that

0 = lim
ni→∞

∫
□γ

lp

(uni + q̄) =

∫
□γ

lp

q̄,

and q̄ = 0 by Lemma 23. This yields

lim
ni→∞

∥uni∥k+1−|γ|,p,K̂ = 0,

which contradicts limni→∞ ∥uni
∥k+1−|γ|,p,K̂ ≥ limni→∞ |uni

|0,p,K̂ = 1. □

Now, we have defined the set Ξγ,k
p that satisfies (23) and the estimate (24) has been

shown. Therefore, Theorem 21 has been proved by (25).

Exercise: We have shown the Theorem 21 for the case 1 ≤ p < ∞. Prove Theorem 21

for the case p = ∞.

§ 7. The error estimation on general triangles in terms of circumradius

Using the previous results, we can obtain the error estimations on general triangles.

Recall the reference triangle and the definition of the standard position of an aribtrary

triangle K (Figure 2). Let Kαβ be the triangle with the vertices (0, 0)⊤, (α, 0)⊤, and

(0, β)⊤. Let K̂ be the reference triangle with the vertices (0, 0)⊤, (1, 0)⊤, and (0, 1)⊤.

We consider 2× 2 matrices

A :=

(
α βs
0 βt

)
=

(
1 s
0 t

)(
α 0
0 β

)
, Ã :=

(
1 s
0 t

)
, Dαβ :=

(
α 0
0 β

)
,

A−1 =

(
α−1 −α−1st−1

0 β−1t−1

)
=

(
α−1 0
0 β−1

)(
1−st−1

0 t−1

)
,
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x1 x2

x3

α

hK
β

θ K

Figure 6. The standard position of a general triangle (reprint). The vertices are x1 =
(0, 0)⊤, x2 = (α, 0)⊤, and x3 = (βs, βt)⊤, where s2 + t2 = 1, t > 0. We assume that
0 < β ≤ α ≤ hK . Then, π/3 ≤ θ < π.

and the linear transformation y = Ax. The reference triangle K̂ is transformed to

Kαβ by y = Dαβx, and Kαβ is transformed to K by y = Ãx. Accordingly, T k
p (K) is

pulled-back to T k
p (Kαβ) by the mapping T k

p (K) ∋ v 7→ v̂ := v ◦ Ã, and T k
p (Kαβ) is

pulled-back to T k
p (K̂) by the mapping T k

p (K) ∋ v 7→ v̂ := v ◦Dαβ .

By Theorem 21, for arbitrary α ≥ β > 0 and arbitrary p, 1 ≤ p ≤ ∞, there exists

a constant Ck,m,p depending only on k, m, p such that

(28) Bm,k
p (Kαβ) := sup

v∈T k
p (Kαβ)

|v|m,p,Kαβ

|v|k+1,p,Kαβ

≤ αk+1−mCk,m,p.

A simple computation confirms that Ã⊤Ã has the eigenvalues 1±|s|, and Ã−1Ã−⊤

has the eigenvalues (1± |s|)−1. That is, ∥Ã∥ = (1 + |s|)1/2, ∥Ã−1∥ = (1− |s|)−1/2, and

det Ã = t. Therefore, defining v̂(x) = v(Ãx) for v ∈ T k
p (K), it follows from (12) that

|v|m,p,K ≤ 2mµ(p)t1/p∥Ã−1∥m|v̂|m,p,Kαβ
,

2−(k+1)µ(p)t1/p∥Ã∥−(k+1)|v̂|k+1,p,Kαβ
≤ |v|k+1,p,K .

Combining the above inequalities and (28), we obtain

|v|m,p,K

|v|k+1,p,K
≤ ck,m,p∥Ã∥k+1∥Ã−1∥m

|v̂|m,p,Kαβ

|v̂|k+1,p,Kαβ

≤ ck,m,pCk,m,p∥Ã∥k+1∥Ã−1∥mαk+1−m,

where ck,m,p := 2(k+1+m)µ(p). Hence, we obtain the following lemma.

Lemma 25. For an arbitrary triangle K in the standard position, we have

Bm,k
p (K) ≤ ck,m,p∥Ã∥k+1∥Ã−1∥mBm,k

p (Kαβ)

≤ ck,m,pCk,m.p∥Ã∥k+1∥Ã−1∥mαk+1−m,

where ∥Ã∥ = (1 + |s|)1/2 and ∥Ã−1∥ = (1− |s|)−1/2.
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Applying Lemma 25 to v − Ik
Kv ∈ T k

p (K), we have the following corollary.

Corollary 26. For an arbitrary triangle K in the standard position, we have

|v − Ik
Kv|m,p,K ≤ ck,m,pCk,m.p∥Ã∥k+1∥Ã−1∥mαk+1−m|v|k+1,p,K , ∀v ∈ W k+1,p(K).

We would like to obtain upper bounds of ∥Ã∥ and ∥Ã−1∥. From Lemma 25, we

obviously have ∥Ã∥ ≤
√
2. For ∥Ã−1∥, we observe that

∥Ã−1∥ =
1

(1− |s|)1/2
=

(1 + |s|)1/2

t
(∵ s2 + t2 = 1)

≤ 21/2αβhK

αβhKt
=

αβhK

21/2hK |K|

(
∵ |K| = 1

2
αβt

)
=

23/2RK

hK

(
∵ RK =

αβhK

4|K|

)
.

Thus, redefining the constant Ck,m,p, we obtain the following theorem.

Theorem 27. Suppose that a triangle K is in the standard position. Let k, m
be integers with k ≥ 1, m = 0, · · · , k and 1 ≤ p ≤ ∞. Then, the following estimate
holds:

Bm,k
p (K) := sup

v∈T k
p (K)

|v|m,p,K

|v|k+1,p,K
≤ Ck,m,p

(
RK

hK

)m

αk+1−m,

where RK is the circumradius of K, and Ck,m,p is a constant depending only on
k, m, and p.

Now, let K be an arbitrary triangle. Note that α ≤ hK and the Sobolev norms are

affected by rotations if p ̸= 2 up to an constant (see (13)). Then, with rewriting the

constant, we obtain the following corollary from Theorem 27, that is the main theorem

of this survey (reprint of Theorem 10).

Corollary 28. Let K be an arbitrary triangle with circumradius RK . Let k
and m be intergers with k ≥ 1 and m = 0, · · · , k. Let p, 1 ≤ p ≤ ∞. For the
Lagrange interpolation Ik

Kv of degree k on K, the following estimate holds: for
any v ∈ W 2,p(K),

Bm,k
p (K) := sup

u∈T k
p (K)

|u|m,p,K

|u|k+1,p,K
≤ Ck,m,p

(
RK

hk

)m

hk+1−m
K ,

|v − Ik
Kv|m,p,K ≤ Ck,m,p

(
RK

hK

)m

hk+1−m
K |v|k+1,p,K ,

where Ck,m,p depends only on k, m, and p.
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Remarks: (1) Let Ω ⊂ R2 be a bounded polygonal domain. We compute a numer-

ical solution of the Poisson equation

−∆u = f in Ω, u = 0 on ∂Ω

by the conforming piecewise kth-order finite element method on simplicial elements. To

this end, we construct a triangulation Th of Ω and consider the piecewise Pk continuous

function space Sh ⊂ H1
0 (Ω). The weak form of the Poisson equation is∫

Ω

∇u · ∇vdx =

∫
Ω

fvdx, ∀v ∈ H1
0 (Ω),

and the finite element solution is defined as the unique solution uh ∈ Sh of∫
Ω

∇uh · ∇vhdx =

∫
Ω

fvhdx, ∀vh ∈ Sh.

Céa’s Lemma implies that the error |u− uh|1,2,Ω is estimated as

|u− uh|1,2,Ω ≤

( ∑
K∈Th

|u− Ik
Ku|21,2,K

)1/2

.(29)

Combining (29) and Corollary 28 with p = 2, k ≥ 2, m = 1, we have

|u− uh|1,2,Ω ≤ C

( ∑
K∈Th

|u− Ik
Ku|2k+1,2,K

)1/2

≤ C

( ∑
K∈Th

(RKhk−1
K )2|u|2k+1,2,K

)1/2

≤ C max
K∈Th

(RKhk−1
K )|u|k+1,2,Ω.

Therefore, if maxK∈Th
(RKhk−1

K ) → 0 as h → 0 and u ∈ Hk+1(Ω), the finite element

solution uh converges to the exact solution u even if there exist many skinny elements

violating the shape regularity condition or the maximum angle condition in Th.
Recall the triangle depicted in Figure 3 (right) with vertices (0, 0)⊤, (h, 0)⊤, and

(hα, hβ)⊤ with RK = O(h1+α−β). Suppose now that α + 1 ≤ β < 2 + α. If a se-

quence of triangulations contains those triangles, and k = 1, then maxK∈Th
RK = O(1)

and the piecewise linear Lagrange FEM might not converge. However, if k = 2, then

maxK∈Th
(RKhK) = O(h2+α−β), and the finite element solution certainly converges to

the exact solution, although the convergence rate is worse than expected. This means

that “bad” triangulations with many very skinny triangles can be remedied by using

higher-order Lagrange elements.
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§ 8. Numerical experiments

To confirm the results obtained, we perform numerical experiments similar to those

in [11]. Let Ω := (−1, 1)×(−1, 1), f(x, y) := a2/(a2−x2)3/2, and g(x, y) := (a2−x2)1/2

with a := 1.1. Then we consider the following Poisson equation: Find u ∈ H1(Ω) such

that

(30) −∆u = f in Ω, u = g on ∂Ω.

The exact solution of (30) is u(x, y) = g(x, y) and its graph is a part of the cylinder. For

a given positive integer N and α > 1, we consider the isosceles triangle with base length

h := 2/N and height 2/⌊2/hα⌋ ≈ hα, as shown in Figure 7. Let R be the circumradius

of the triangle. For comparison, we also consider the isosceles triangle with base length

h and height h/2 for α = 1. We triangulate Ω with this triangle, as shown in Figure 7.

Let τh be the triangulation. As usual, the set Sh of piecewise linear functions on τh and

its subsets are defined by

Sh :=
{
vh ∈ C(Ω)

∣∣ v|K ∈ P1(K), ∀K ∈ τh
}
,

Shg :=
{
vh ∈ Sh

∣∣ vh = g at boundary nodes
}
,

Sh0 := {vh ∈ Sh | vh = 0 on ∂Ω} .

Then, the piecewise linear finite element method for (30) is defined as follows: Find

uh ∈ Shg such that

(∇uh,∇vh)Ω = (f, vh)Ω, ∀vh ∈ Sh0,

where (·, ·)Ω is the inner product of L2(Ω). By Céa’s lemma and the result obtained,

we obtain the estimation

|u− uh|1,2,Ω ≤ inf
vh∈Shg

|u− vh|1,2,Ω ≤

(∑
K∈τh

|u− I1
Ku|21,2,K

)1/2

≤ CR|u|2,2,Ω.

The behavior of the error is given in Figure 7. The horizontal axis represents

the mesh size measured by the maximum diameter of triangles in the meshes and the

vertical axis represents the error associated with FEM solutions in the H1 semi-norm.

The graph clearly shows that the convergence rates worsen as α approaches 2.0. For

α = 2.1, the FEM solutions even diverge. This is a counterexample to the vaguely

believed dogma that “FEM solutions always converge to the exact solution if h → 0”.

See also [23].

We replot the same data in Figure 8, in which the horizontal axis represents the

maximum of the circumradius of triangles in the meshes. Figure 8 shows convergence

rates are almost the same in all cases if we measure these with the circumradius. These

experiments strongly support that our theoretical results are correct and optimal.
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Figure 7. Triangulation of Ω with N = 12 and α = 1.6, and the errors for FEM solutions
in the H1-norm. The horizontal axis represents the maximum diameter of the triangles
and the vertical axis represents the H1-norm of the errors of the FEM solutions. The
number next to the symbol indicates the value of α.
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Figure 8. Replotted data: the errors in the H1-norm of FEM solutions measured using
the circumradius. The horizontal axis represents the maximum circumradius of the
triangles.
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